

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

1

UNIT 14: COMMUNICATION PROTOCOLS

AIMS

Purpose of this unit is to become acquainted with communication protocols like Bluetooth,

Ethernet and WiFi.

THEORY SECTION

• INTRODUCTION

• BLUETOOTH

o Design, specifications and features

• ETHERNET

o Hardware and speed ratings

• WiFi

o Range and speed

o Security

• The HTTP protocol

o Formatting the request

PRACTICE SECTION

• EXAMPLE 1: Exchanging data with a mobile device through an established

Bluetooth connection.

• EXAMPLE 2: Sending sensor data to a remote HTTP server via a wired

Ethernet connection.

• EXAMPLE 2: How to set-up the web server to run this example.

• EXAMPLE 3: Sending sensor data to a remote HTTP server via a wireless WiFi

connection (ESP32-DEVKIT).

REQUIRED MATERIALS

- A desktop or laptop computer.

- The Arduino IDE: this should include the supplementary material already installed

and configured.

- An Arduino UNO microcontroller board.

- A USB cable.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

2

Table of Contents
THEORY SECTION .. 3

1. INTRODUCTION .. 3

2. BLUETOOTH .. 3

A. Design, specification and features ... 3

3. ETHERNET ... 4

Α. Hardware and speed ratings .. 5

4. WiFi ... 5

A. Range and speed .. 6

B. Security ... 6

5. The HTTP protocol .. 6

A. Formatting an HTTP request .. 7

PRACTICE SECTION: EXAMPLES .. 8

EXAMPLE 1: Exchanging data with a mobile device through an established Bluetooth

connection. ... 8

EXAMPLE 2: Sending sensor data to a remote HTTP server via a wired Ethernet

connection. ... 11

EXAMPLE 2: How to set-up the web server to run this example. .. 15

EXAMPLE 3: Sending sensor data to a remote HTTP server via a wireless WiFi connection

(ESP32-DEVKIT). .. 19

REFERENCES ... 23

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

3

THEORY SECTION

1. INTRODUCTION

Protocols like Bluetooth, Ethernet and WiFi are popular for IoT (Internet of Things)

applications. We will not examine each and every protocol in extent; instead we will follow a

shorter, introductory course, with fewer details.

2. BLUETOOTH

Bluetooth provides a standardized way of exchanging data between smartphones, tablets,

personal computers, peripherals and other devices.

The protocol was conceptualized with the purpose to replace industrial RS-232 data cables,

but later evolved into the driving force behind WPANs (wireless personal area networks) and

ad-hoc communications.

A. Design, specification and features

Bluetooth is a packet-based protocol with a master/slave architecture. It can accept up to 7

simultaneously connected devices in what is called a “piconet”; not all Bluetooth devices can

reach this maximum, though.

It operates at frequencies between 2402 and 2480 MHz. These frequencies are named the

“industrial, scientific and medical” (ISM) short-range frequency bands, and they are

unlicensed, but not unregulated.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

4

Bluetooth has a number of different “profiles”. These are predefined behaviours that

Bluetooth-enabled devices adhere to, so they can communicate with each other in a

standardized manner.

With the exception of the newer Bluetooth 5.0, Bluetooth has a rather short –up to 100m-

physical range, although its actual performance depends on a number of factors, such as

transmitter power, receiver sensitivity, obstacles in the line-of-sight, etc.

Consult the table below for an approximation of the protocol’s physical range.

Class
Maximum permitted power Typical range (in

meters) (in mW) (in dBm)

1 100 20 ~100

2 2.5 4 ~10

3 1 0 ~1

4 0.5 -3 ~0.5

Its maximum attainable speed, just like its physical range, can vary. In practise, speeds greater

than 1 Mbit/s are rarely observable.

3. ETHERNET

Unlike Bluetooth, Ethernet is a family of technologies for wired communications, used

extensively in various networking schemes. It has been standardized as 802.3 by IEEE in 1985

for use in wired local area networks.

Various Ethernet standards can provide services

up to the data link layer of the OSI model. Higher

layers, like the transport layer, will be examined

later on.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

5

Ethernet slices streams of data into shorter pieces called frames. These frames, along with the

actual data, also carry destination and source addresses and error-checking information, in

order for the system to detect and discard damaged frames.

Α. Hardware and speed ratings

At the beginning, Ethernet used coaxial cabling on a bus-style topology with limited bandwidth

topping at 3 Mbit/s (Token Ring LAN), but evolved into using shielded twisted pair cabling,

optic fiber media and point-to-point links.

Various Ethernet implementations provide for a speed magnitude of 1 Mbit/s and up to 400

Gbit/s (as of 2018).

4. WiFi

One of the most popular wireless communication protocols is WiFi, since it is available at

almost any public or private space. It is based on the IEEE 802.11 standards, and whilst it is

very versatile, it lacks power efficiency, which makes its use for IoT applications rather

cumbersome.

Different versions of WiFi exist, each one with different ranges, radio bands and speeds. The

most commonly used bands are 2.4 GHz (UHF) and 5.0 GHz (SHF). These bands are divided

into multiple channels, and each channel can be shared across multiple networks using time-

division techniques.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

6

A. Range and speed

Just like any radio technology, WiFi speed and range is dependent upon various factors, such

as the frequency band, the transmitter’s power output, the receiver’s sensitivity, the type of

the antenna used, its gain, etc.

In general, WiFi transmitters are considered low power devices, with several regulations

existing for specifying its upper power limits. In the European Union, the equivalent

isotropically radiated power (EIRP) is limited to 20 dBm, or 100 mW.

B. Security

With WiFi being a wireless technology, one simply has to be in the network’s range to gain

access to it. With wired technologies, such as Ethernet, this is not much of a problem since the

network is physically limited.

Several ways of securing a wireless network exist. Common ones include:

- Hiding the access point’s broadcasted name (SSID);

- Only allowing know clients to join the network (MAC address filtering);

- Utilizing encryption, as to protect the transmitted data.

The latter is considered the most secure way of interacting with a WiFi network, although, in

practice, several security options are employed in conjunction.

5. The HTTP protocol

The hypertext transfer protocol (HTTP) allows for a number of request methods for a client to

communicate with a server. One of the most common of them, is the GET request. It is

specified by the RFC 2616 specification and it is part of HTTP/1.1.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

7

A. Formatting an HTTP request

A request from a client to a server includes, within the first line of that message, the method

to be applied to the resource (GET, POST, etc.), the identifier of the resource, and the protocol

version in use (this is called “the request line”). These are followed by a number of (optional)

headers which allow the client to pass additional information about the request, or about the

client itself, to the server. An empty line (a line with nothing preceding the CRLF) indicates the

end of the header fields, and the message-body follows.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

8

PRACTICE SECTION: EXAMPLES

EXAMPLE 1: Exchanging data with a mobile device through an established

Bluetooth connection.

Bluetooth can be a “handy” protocol for Arduino-based

applications, since the available solutions are affordable

and easy to work with.

One of the most widely available Bluetooth modules for the

Arduino is the HC-05 (see the photo on the right) which

allows for easy interfacing via serial (UART) communication. This is the module that we are

going to use in this exercise.

Alongside with the Bluetooth module, we are going to use a (freely available) application for

the Android operating system, called “Serial Bluetooth Terminal” by Kai Morich. As its’ name

implies, it is a terminal emulator.

Consult the following schematic diagram to implement the circuit for this example;

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

9

The light-dependent resistor –R2- alongside with R3, form a voltage divider from which we

will be reading the luminance levels of the room.

The same circuit is presented on a breadboard, to ease your prototyping.

As soon as you complete the circuit, upload the provided sketch to your Arduino, and fire the

application on your mobile phone or tablet.

Before being able to exchange data, we will need to establish a Bluetooth connection between

the module and the mobile device.

Tap the icon next to the ‘Terminal’ label to open the application’s main menu, and from it, tap

‘Devices’.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

10

For the HC-05 module that we are using, we will need to select

‘Bluetooth Classic’, not ‘Bluetooth LE’. Then tap on the

module’s name to select it. Tap again on the menu icon and

pick ‘Terminal’ to return to the main screen. The last step is to

tap the connect icon, to initiate the connection.

That was it! Now the application is ready to exchange data with the module! In fact, you should

already be seeing the analog voltage readings from the Arduino being transmitted to the

application.

Other than that, you should also be able to flick the connected LED on or off, simply by issuing

single-character commands, ‘0’ or ‘1’.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

11

EXAMPLE 2: Sending sensor data to a remote HTTP server via a wired

Ethernet connection.

Arduino cannot communicate on either wired or

wireless networks by itself, since it lacks the required

hardware.

On this example, we are going to used what is called an

“Ethernet Shield” to provide Arduino with the required

hardware to connect to a wired network. Apart from the

rather obvious RJ-45 connector, which is physically required for connecting the network cable,

what is also important is the Wiznet W5500 Ethernet IC, which hosts a network stack capable

for both TCP and UDP. The Ethernet Shield communicates with the Arduino over SPI (pins 10,

11, 12 and 13 on the Arduino Uno). Be aware that those pins, cannot be used for other

purposes.

A custom web application has been developed for us to work on. The development the

application itself, however, is outside the scope of the course.

Consult the following schematic diagram to implement the circuit for this example;

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

12

The LDR (R1) alongside with R2 form a voltage divider from which we will be making analog

voltage measurements The switch (S1) triggers an interrupt on GPIO pin 2 when clicked.

The same circuit is presented on a breadboard, to ease your prototyping.

As soon as you complete the circuit and connect the Ethernet Shield to your network, upload

the provided sketch to your Arduino, and launch a web browser on your desktop or laptop

computer.

It is important to remember to add a few network settings (such as the MAC address, IP

address, subnet mask, DNS server and gateway) if you are on a network incapable of DHCP. If

you are on a DHCP-enabled network, setting those values is not required.

Let’s examine these values, before we continue with the example;

A media access control address (MAC address) is a unique identifier assigned to a network

interface controller by its manufacturer. It is applicable for both Ethernet and WiFi. The

Ethernet Shield has its MAC address printed on a sticker underneath it. If using a brand other

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

13

than Arduino/Genuino, you may need to manually pick a MAC address (pick one at random;

the chances that you will come across the same address in your network are nil). Declaring

the MAC address of the Ethernet Shield in your code is mandatory for the sketch to work.

The internet protocol address (IP address) is a 32-bit (in IPv4) numerical label assigned to each

device on your network.

The subnet mask is a bitmask applicable to your network, that when applied by a bitwise AND

operation to any IP address in the network, yields the routing prefix.

The DNS server is a server that translates domain names (e.g. “google.com”) into their

corresponding IP addresses (e.g. “74.125.224.72”).

The gateway, finally, refers loosely to your router.

Typically, the values discussed above (with the exception of the MAC address) will get assigned

automatically through a DHCP network sever. However, it is possible for the Arduino to

request for specific addresses.

Now, let’s talk a bit about the code…

client.stop();

The above method stops any previous connection left open.

client.connect(host, 80);

In this method, a new connection is established. Arduino tries to connect to port 80 (HTTP

server) of “host” (defined earlied).

if (client.connected()) {

 client.print((String)"GET /arduino/getdata.php?deviceid=" + String(device) + " HTTP/1.0\r\n"

 + "User-Agent: Arduino\r\n"

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

14

 + "host: " + host + "\r\n"

 + "Connection: close\r\n\r\n");

 timeout_timer = millis();

 } else {

 Serial.println("Client not connected.");

 return;

 }

The code above sends an HTTP GET request to a specific script that is meant to return either

‘0’ or ‘1’, so that the Arduino can change the state of the LED. It first checks for an active

connection. If the check succeeds, the GET request get formatted and sent to the host. If on

the other hand, the check fails, a message is printed on the serial port and loop returns.

while (client.available()) {

 buffer = client.read();

 }

 if (buffer == '1') {

 digitalWrite(GPIO_led, HIGH);

 }

 else {

 digitalWrite(GPIO_led, LOW);

 }

The above code checks for any incoming data (i.e. the server has responded) and reacts

accordingly: if the data received is a ‘1’ it turns the LED on. If it’s a ‘0’, it turns it off.

Lastly, the code inside the if (button) block, acts in a similar manner: terminates any

connection that has been kept-alive, re-connects to the host and sends a request. Only this

time, instead of sending the device identifier and waiting for a response, it just sends some

data (read from the ADC) and then exits.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

15

Ethernet.maintain() just before exiting the loop renews the lease for the Arduino on

the gateway.

When you click the button, the

interrupt fires and the values from the

Arduino’s ADC get uploaded to the web

application. You should be able to see

them by refreshing the web application

(hit F5 - it does not refresh

dynamically).

You should also be able to change the

status of the connected LED by simply clicking the ‘ON’ / ‘OFF’ links on the web application,

under your client’s name.

EXAMPLE 2: How to set-up the web server to run this example.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

16

Whilst the web application has already been developed, running it requires an HTTP server

alongside with a few key components to be installed.

The web application has been developed with WAMP/LAMP setups in mind, so you will need

to provide the appropriate software stack for it to run. Luckily, there are quite a few easily

installable packages that provide the required software and configuration settings.

In this guide we are going to install the XAMPP package for Windows, which is one of them.

Download and install the latest XAMPP package from https://www.apachefriends.org/. Pick

the latest PHP version (7.2+) that is available. The installation is pretty straightforward, since

it is a point-and-click guided install, just like most software packages you already run in your

computer.

After the installation is finished, launch the XAMPP Control Panel and make sure that the

Apache and MySQL servers are up and running.

Also, launch a terminal (click on the Start button, type ‘cmd.exe’ and hit Enter) and issue

the ipconfig command to find your computer’s local IP address. You will need to enter this

address in your Arduino sketch.

https://www.apachefriends.org/

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

17

Figure: A command-line window presenting the computer’s local IP address.

The next step is to navigate to localhost from a web browser and launch phpMyAdmin from

the top navigation menu. We are going to use this application to import the database.

The left sidebar presents the available databases. We will create a new one by clicking on the

‘New’ button. Name the new database ‘arduino’ and pick ‘utf8_bin’ as the collation. But

do not create any tables yet!

With the newly created database selected, click on the ‘Import’ tab atop. Browse for the

provided arduino.sql schema file leaving the default options selected and hit Go.

Figure: Creating a new database with phpMyAdmin. The ‘Import’ button is also visible.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

18

That was it! Now the database structure has been imported, and the database is ready to

accept queries from the web application.

The last step is to copy and paste the ‘arduinopanel’ directory inside your web server’s root

directory. If you followed along and installed XAMPP with its default options selected, this

should be <ROOT_DISK>\XAMPP\htdocs\. Your <ROOT_DISK> is probably your C:\ drive.

Figure: XAMPP’s directory contents. The web application is mean to live inside the ‘htdocs’ directory (the highlighted one).

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

19

Figure: The contents of the web application.

Now visit http://localhost/arduinopanel/ to run the web application.

EXAMPLE 3: Sending sensor data to a remote HTTP server via a wireless WiFi

connection (ESP32-DEVKIT).

For enabling WiFi communication on the Arduino, there is no straightforward option, as the

equivalent “WiFi Shield” is a rather expensive solution.

Luckily for us, a China-based company called Espressif has developed a chip called ‘ESP32’

which is exactly what we were looking for: an affordable, Arduino-programmable

microcontroller with WiFi capabilities.

http://localhost/arduinopanel/

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

20

The ESP32-DEVKIT by doit.am is a microcontroller board that hosts the aforementioned chip,

and we are going to use it –in place of the Arduino- to communicate with the web application

that we used in the previous example.

The schematic diagram for this exercise is very similar to the previous one:

Note that the GPIO pins for the LED and the switch have been changed, to facilitate the

differences the ESP32 has.

The same circuit is presented on a breadboard, to ease your prototyping.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

21

A WiFi network, unless configured not to do so, broadcasts an SSID (read: network’s name).

This SSID, alongside with the network’s password, for password-protected networks, are the

two required attributes for a successful connection.

The code changes in this exercise facilitate this:

const char ssid[] = "ssid";

const char pass[] = "pass";

Inside setup(), we will try to connect to the wireless network. This is accomplished by the

WiFi.begin(ssid, pass) method.

Following that, a while loop with a conditional statement that checks for the status of the

connection makes sure that the code thereafter will not be executed until the connection has

been established.

while (WiFi.status() != WL_CONNECTED)

 {

 delay(500);

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

22

 Serial.print(".");

 }

The exercise actually follows the same scenario; hence, you already know how to use the web

application in order to interact with the ESP32 and the logic of the sketch.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which

reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information
contained therein."

23

REFERENCES

BOOKS

WEBSITES

[1]. https://www.arduino.cc/

[2]. https://electronics.stackexchange.com/

[3]. http://www.espressif.com/

[4]. https://www.w3.org/

https://www.arduino.cc/
https://electronics.stackexchange.com/
http://www.espressif.com/
https://www.w3.org/

