

Co-funded by the Erasmus+ Programme of the European Union



# **UNIDAD 11: CONTROL DE SERVOMOTORES**





Instituto Superior de Engenharia do Porto





### Objetivo y Programa de la Unidad 11

Objetivo de la presentación Estudiar las ideas principales y ejemplos básicos sobre el control servomotor en Arduino

#### Programa de la presentación

- Explicar qué es un servomotor
- Analizar la **composición** de un servomotor
- Proporcionar información sobre los diferentes tipos de servomotores
- Explicar la idea de las señales PWM (Modulación de Anchura del Pulso)
- Proporcionar el esquema básico de control de un servomotor
- Utilizar la librería "SERVO" para controlar el servomotor





## COMPOSICIÓN DE LOS SERVOMOTORES



Estos dispositivos son similares a un motor convencional, pero tienen la capacidad de realizar giros o movimientos de forma controlada en cualquier dirección y a cualquier posición dentro de su rango de acción. Se emplean en el ámbito de la robótica y en el industrial: movimientos y giros de un brazo robótico, apertura/cierre controlado de una válvula, el desplazamiento de un útil o herramienta, posicionamiento de objetos, etc...





#### Componentes de los servos









 Nuestro servo necesita únicamente de tres cables. El cable negro se conecta con la tensión GND o 0 V de alimentación. El rojo se conecta con la tensión de +5 V. Por el cable blanco se aplica la señal PWM de control. Naturalmente esta señal la va a generar nuestro Arduino.



• Comercialmente puedes encontrarte con muchos fabricantes, tipos y modelos de servos. Se diferencian en el tamaño, fuerza o "*par*" *motor, velocidad, tensión de* alimentación, tipo de eje y su recorrido posible. Hay servos cuyo eje puede rotar libremente y otros sólo pueden girar un determinado número de grados. El que vas a usar en las prácticas puede girar 180º.

| Servo Type     | Positive (+) | Signal (S) | Negative (-) |
|----------------|--------------|------------|--------------|
| Cirrus         | Red          | White      | Black        |
| Futaba - J     | Red          | White      | Black        |
| JR             | Red          | Orange     | Brown        |
| Hitec          | Red          | Yellow     | Black        |
| Airtronics     | Red          | Orange     | Black        |
|                | Red          | White      | Black        |
|                | Red          | Black      | Black        |
| Airtronics - Z | Red          | Blue       | Black        |
| Fleet          | Red          | White      | Black        |
| GW             | Red          | Orange     | Brown        |

• El control de un servo se realiza aplicándoles una señal PWM por la patilla correspondiente.





#### Las señales PWM (Modulación de Anchura del Pulso)

- Arduino no dispone de salidas analógicas puras
- Utiliza las señales PWM para simular valores variables de la corriente continua
- Arduino Uno tiene 6 patillas de señales PWM: 3, 5, 6, 9, 10, 11
- Función: analogWrite(patilla, valor)
- Valor determina la duración del ciclo útil: entre 0 y 255
- Ejemplos:

analogWrite(9, 256\*1/2) un ciclo útil del 50% analogWrite(11, 256\*1/4) un ciclo útil del 25%



Period = TON + TOFF Frequency = 1 / Period Duty Cycle =  $\frac{TON}{TON + TOFF}$  \* 100

Your Arduino board has built in PWM circuits, on pins 3, 5, 6, 9, 10, and 11



PWM, o Modulación de Anchura del Pulso, es una técnica que nos permite ajustar el valor del voltaje que recibe un dispositivo electrónico mediante el encendido y apagado de la potencia en una frecuencia de tiempo determinada. La potencia aplicada depende del ciclo útil, o de la frecuencia de tiempo que la señal está encendida frente a la que está apagada en un período determinado.

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

25% Duty Cycle - analogWrite(64)

50% Duty Cycle - analogWrite(127)

75% Duty Cycle – analogWrite(191)

100% Duty Cycle - analogWrite(255)

5v

0v

5v

0v

5v 0v

5v

0v





#### Control del servomotor mediante señales PWM

El control de un servo se realiza aplicándoles una señal PWM por la patilla correspondiente. El ciclo útil de esa señal determina la posición o rotación a la que se desplazará el eje. Aunque tienes que atenerte a las especificaciones que suministra el fabricante para un modelo en particular, en la figura tienes un buen ejemplo que te puede servir.









#### Control del servomotor mediante la librería "SERVO"

• Nos vamos a centrar en la librería "Servo". Se trata de un fichero, el "Servo.h", que facilita el propio equipo de Arduino y que se instaló automáticamente junto con el IDE de desarrollo. Es decir, que ya lo tienes en tu ordenador.

• Si incluyes este fichero en tus programas, puedes pensar que el lenguaje Arduino de programación se ha enriquecido con las nuevas funciones integradas en él.

| Funciones que se utilizan con Arduino en la librería "SERVO"<br>#include <fichero.h></fichero.h>                                                                                          |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| servo my_servo_1 Asigna un nombre a tu servo                                                                                                                                              |  |  |  |
| my_servo_1.attach (patilla, min, max) Establece la patilla que vas a conectar al servo con el ciclo útil min y max                                                                        |  |  |  |
| <b>my_servo_1.writeMicroseconds(</b> <i>uS</i> <b>)</b> Genera una señal PWM cuyo ciclo útil, expresado en microsegundos, se aplica al servo indicado y origina por tanto el giro del eje |  |  |  |
| my_servo_1.write(valor) Determina los grados a girar entre 0º y 180º                                                                                                                      |  |  |  |
| <b>my_servo_1.read()</b> Devuelve el ángulo actual en el que se encuentra el eje del servo, que no es otro que el correspondiente al último movimiento que hiciste con write().           |  |  |  |
| <b>my_servo_1.attached()</b> Comprueba si un servo está o no asociado a una determinada patilla. Devuelve "verdadero" (true) o "falso" (false).                                           |  |  |  |
| my servo 1 detach() Desconecta o desvincula la variable Servo de su correspondiente patilla                                                                                               |  |  |  |



