

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

1

UNIT 6: LCD (LIQUID-CRYSTAL DISPLAY) SCREENS

AIMS

As you can imagine there’s a broad range of digital input and output peripherals. Up until now

you’ve just used the most common ones – simple, economical pushbuttons or switches – as

devices for setting “1” and “0” logic levels and the LEDs and the diodes for representing them.

 But now it’s time to talk about other more important and better known digital peripherals. In

this unit so we’re going to take a look at the LCD screen as an output peripheral: it enables

you to display any kind of output information including numbers, letters and symbols.

THEORY SECTION

• LCD SCREENS

• THE CHARACTER SET

• GRAPHIC CHARACTERS

• THE LiquidCrystal.h LIBRARY

• THE EEPROM DATA MEMORY

 PRACTICE SECTION

• CONNECTING LCD SCREENS

• EXAMPLE 1: Hello world!!

• EXAMPLE 2: The screen

• EXAMPLE 3: The cursor

• EXAMPLE 4: Blinking

• EXAMPLE 5: Text direction

• EXAMPLE 6: Scrolling

• EXAMPLE 7: AutoScroll

• EXAMPLE 8: Custom characters

• EXAMPLE 9: Display

• EXAMPLE 10: Displaying whole numbers

• EXAMPLE 11: Displaying floating-point numbers

• EXAMPLE 12: Menu

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

2

• EXAMPLE 13: Choice of options

• EXAMPLE 14: One last improvement

PRACTICE MATERIALS

-Lap top or desk top computer

-Arduino IDE work environment; this should include the supplementary material already installed and

configured.

-Arduino UNO controller board

-A USB cable

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

3

TABLE OF CONTENTS

THEORY SECTION ... 4

1. LCD SCREENS ... 4

2. THE CHARACHER SET ... 6

3. THE GRAPHIC CHARACTERS ... 7

4. THE LIQUIDCRYSTAL.H LIBRARY ... 9

5. THE EEPROM DATA MEMORY ... 16

PRACTICE SECTION ... 18

6. CONNECTING THE LCD SCREEN ... 18

7. EXAMPLE 3: HELLO WORLD! .. 21

8. EXAMPLE 2: THE SCREEN .. 21

9. EXAMPLE 3: THE CURSOR ... 21

10. EXAMPLE 4: BLINKING .. 21

11. EXAMPLE 5: TEXT DIRECTION ... 22

12. EXAMPLE 6: SCROLLING .. 22

13. EXAMPLE 7: AUTOSCROLL ... 22

14. EXAMPLE 8: CUSTOM CHARACTERS ... 23

15. EXAMPLE 9: DISPLAY .. 24

16. EXAMPLE 10: DISPLAYING WHOLE NUMBERS .. 24

17. EXAMPLE 11: DISPLAYING FLOATING-POINT NUMBERS .. 25

18. EXAMPLE 12: MENU .. 25

19. EXAMPLE 13: OPTION SELECTION ... 27

20. EXAMPLE 14: ONE LAST IMPROVEMENT ... 28

:REFERENCES .. 29

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

4

THEORY SECTION

1. LCD SCREENS

This is an output peripheral that not only shows numbers but also all kinds of characters, texts,

symbols and even simple graphics. It’s got thousands of uses and you must have seen it tons of times.

You’ll see them with different numbers of lines and characters per line. There are also ones with different

coloured backlighting and characters of different colours and sizes.

They’ve all got their own controller that administers all the internal operations. Most of them are

compatible with the popular Hitachi HD44780. That’s why it doesn’t make much difference which screen

you use: 2 lines by 16 characters one or 4 lines by 20 characters.

 You’re going to use a 2 x 16 LCD screen. There’s a picture of one in the figure with a simplified

representation and an electrical diagram (Figure 1).

An LCD screen is a digital peripheral. Its signals can be connected directly to the controller’s

input and output pins. They’re divided into three groups:

o Power supply: The input and output pins deliver the voltage required by the screen and

they’re usually + 5V GND and VCC. There’s also a third pin, a VLC; it delivers a voltage

alternating between 0 V y +5 V that can be used to adjust screen contrast.

o Control: These are the signals that decide whether the screen receives a command or some

data, if it’s going to be read or written by the controller or if the screen is enabled or not.

o Data: The controller uses these signals to send commands and data proper to the screen.

Pin nº 1 is the first on the left, have a look at where pin number 1 is positioned (Figure 2).

Figure 1

Figure 2

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

5

 Have a look at the following table that contains a description of each pins.

PIN Nº NAME TYPE DESCRIPTION

1 Vss Voltage supply Ground power supply (0 V)

2 Vdd Voltage supply Positive +5 Vcc power supply

3 VLC Voltage supply Contrast adjustment: voltages alternating between 0 and +5 Vcc.

4 RS Input

Output from the Arduino controller. Selects between instructions and data:

RS=0 Arduino transfers instructions

RS=1 Arduino transfers data (ASCII codes)

5 R/W Input

Output from Arduino. Controls reading and writing:

R/W=0 Arduino performs data write on the LCD screen

R/W=1 Arduino performs data read of the LCD screen

6 E Input

Output from Arduino. Enables the screen:

E=0 LCD screen disabled (on high impedance)

E=1 LCD screen enabled

7-14 DB0:DB7 Input/Output

Data and instruction bus lines. Arduino transfers instructions or data to the screen according to

the RS signal.

The DB0:DB7 lines are used with an 8 bit interface

The DB4:DB7 lines are used with an 4 bit interface

15 L+ Voltage supply Positive voltage for background light (+5 Vcc)

16 L- Voltage supply Negative voltage for background light (0 V)

We’re not going to use pin numbers 15 and 16: they’re optional. It’s quite possible they don’t

even appear on the screen; only the ones with background light use them.

Screens are amongst the most powerful and versatile peripherals. As we’ve already said, they’re

able to display all kinds of messages comprised of text, numbers or symbols as well as provide a variety

of viewing effects such as movements to the left or right, flickering, scrolling etc. An LCD screen has a

separate controller.

The LCD screen you’re going to use and which is included in the kit of suggested materials

appears in the above figure. This screen comprises two rows of 16 characters each (2 x16). You’ll also

notice how you have to solder a strip of 14/16 male pins; this will make it easier to insert them on the

practice module board later. You’ll be able to make the connexions with the controller much more

quickly..

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

6

2. THE CHARACHER SET

Communication between Arduino and LCD screens is achieved basically through DB0-DB7 digital

pins. You can use eight pins or, as in our case, just four. This is called working with a “4 bit interface”.

Arduino send commands or instructions to the screen through the pins. The screen can then carry

out a range of display effects: scrolling, flickering, deleting, positioning the cursor etc… It also sends the

ASCII character codes that you want to display. These are 8 bit codes. If you use an “8 bit interface”,

Arduino needs only a single transfer to display each character; a “4 bit interface” needs two transfers to

display each character. It’s a bit slower but you use fewer connection cables. But in any case, don’t

worry too much about it: the functions you’re going to study will make the task a great deal easier.

The following ¡Error! No se encuentra el origen de la referencia. shows a sample of the

character set that LCD screens display; this set is established by the manufacturer. The internal ROM

memory contains the definition of each one of the characters and is able to vary between different

models and versions.

The four lightest bits, B3:B0, are represented in the rows to the left. The four heaviest ones, B7:B4,

are represented at the top of the table in the columns in binary code. All you have to do to code a

character is select it and then find which column or row it’s in. Here’s an example: the character ‘F’ is in

column 4 (0100) and row 6 (0110). Its binary code is therefore 0100 0110 (0x46) which corresponds

exactly with the ASCII code for the character “F”. We mentioned before that not all screens have the

same character set. It depends on the manufacturer, the model, the version etc. However, the codes

corresponding to the standard ASCII characters are common to all screens. These are the ones in

columns 2 (0010) to 7 (0111).

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

7

3. THE GRAPHIC CHARACTERS

You can create a total of up to eight graphic characters of 5 x 8 points or “pixels”. Each character

is numbered 0 to 7 and needs a total of 8 bytes to be defined. The LCD screen has an internal RAM

memory called CGRAM to do this task. Once they’ve been defined, you can display them by sending

the number that corresponds to the character (between 0 and 7). Don’t forget: the graphic characters

are stored in the RAM memory. If you unplug the system you lose them and Arduino has to define them

again.

 The graphic characters are defined by inserting bytes into successive positions of the CGRAM

memory; the binary patterns of the bytes define each character. The CGRAM is a volatile memory

capable of storing a total of 64 bytes. A 5 x 8 point character needs 8 bytes to define it. So you can

define up to eight different characters (8 x 8) whatever way you like.

Figure 3

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

8

The following table (Figure 4) contains four 5 x 8 defined characters as an example. They are

inserted in the first 32 positions of the CGRAM. The first one goes in positions 0 to 7, the second in

positions 8 to 15 and so on and so forth.

Each bit of each one of the bytes that have a value of “1” activates its corresponding point or pixel

on the LCD screen. The first graphic character of the CGRAM is displayed by sending the number 0 as

if it were an ASCII code. The second character is viewed by sending the number 1 and so on with all

the ones you have defined.

All you have to do to define them is to create an array or matrix for each character. Next, the

contents of each array is copied onto the screen CGRAM using the crateChar() function - you’ll be

studying this straight away. You have to create the same number of arrays as characters; there four in

this example:

1. byte heart[8] = {10,21,17,17,17,10,4,0};

2. byte smile[8] = {B0,B01010,B0,B00100,B00000,B10001,B01110,B0};

3. byte letter_ñ [8] = {31,0,24,27,17,17,17,0};

4. byte letter_ú [8] = {2,4,17,17,17,19,13,0};

Figure 4

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

9

4. THE LIQUIDCRYSTAL.H LIBRARY

You’ll be familiar with the concept of a “library” by now and how to handle the range of functions it

contains. Arduino has created a large number of libraries but we’re just going to talk about one:

“LiquidCrystal.h”. It contains a large number of functions designed to control and operate LCD screens

based on the Hitachi HD44780 controller or compatible with it.

We’re going to study the most representative and important functions. In any case, I recommend

you visit www.arduino.cc where you’ll find lots of information and examples of all of them.

• Function: LiquidCrystal()

This function creates a “LiquidCrystal” type variable and establishes the connections between the

LCD screen and the Arduino controller; you can use an 8 or 4 bit interface between them. In this case,

don’t use the D0-D3 lines. You can also decide whether or not to use the R/W screen signal. If you don’t

use it, as in this case, connect the signal to GND. You’ll do this in the practice section.

Syntax:

LiquidCrystal var(RS,E,D4,D5,D6,D7); //For a 4 bit interface without R/W signal

LiquidCrystal var(RS,RW,E,D4,D5,D6,D7); //For a 4 bit interface with R/W signal

LiquidCrystal var(RS,E,D0,D1,D2,D3,D4,D5,D6,D7); //For an 8 bit interface without R/W signal

LiquidCrystal var(RS,RW,E,D0,D1,D2,D3,D4,D5,D6,D7); //For an 8 bit interface with R/W signal

var: the name for the variable assigned to the LCD screen that you’re going to control.

RS: the Arduino pin connected to the screen RS signal.

RW: the Arduino pin connected to the screen R/W signal (if it’s going to be used).

E: the Arduino pin connected to the screen E signal.

D0-D7: Arduino pins that are connected to the screen DB0-DB7 data lines. If there are no pins indicated

for DB0-DB3, we assume a 4 bit interface and only employ DB4-DB7 signals.

Example:

LiquidCrystal lcd(7,8,9,10,11,12); //Establishes the connection of a screen called “lcd”. Arduino
//pins D7 to D12 are connected to the screen RS, E, DB4, DB5,
//DB6 and DB7 signals. The R/W signal must be connected to
//GND.

http://www.arduino.cc/

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

10

• Function: Begin()

This function starts up the LCD screen and assigns it the number of rows and the number of

characters per row according to the model in question. In this case you’re going to use a 16 x 2 character

screen.

Syntax:

var.begin(c,f);

var: this is the name that defines the screen in question (established in LyquidCrystal()).

c: the number of columns.

f: the number of rows.

 Example:

LiquidCrystal lcd(7,8,9,10,11,12); //Connections to the LCD screen lcd.begin(16,2); this

// is a 16 x 2 “lcd” screen

• Function: setCursor()

This function positions the LCD screen cursor as desired. From then on the preceding characters

will be displayed.

Syntax:

 var.setCursor(c,f);

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

c: the number of columns (starting from 0).

f: the number of rows (starting from 0).

Example:

LiquidCrystal lcd(7,8,9,10,11,12); //Connections to the LCD screen

lcd.setCursor(3,0); //Places the cursor in position 3 (4th //character) of row

//0 (the 1st)

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

11

• Function: home()

This function locates the cursor in the top left hand corner (position 0 of row 0) of the screen’s first

position. It doesn’t delete what was being previously displayed.

Syntax:

 var.home();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: clear()

This function clears the LCD screen and locates the cursor in the top left hand corner (row 0 position 0).

Syntax:

var.clear();

var: This is the name that defines the screen in question (established as LyquidCrystal()).

Example:

LiquidCrystal lcd(7,8,9,10,11,12); //Connections to the LCD screen

lcd.clear(); //Clears the screen

• Function: write()

This function writes a character in the cursor’s current position.

Syntax:

var.write(char);

var: This is the name that defines the screen in question (established as LyquidCrystal()).

char: The character to be displayed

Example:

lcd.write(‘A’); //It writes ‘A’

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

12

• Function: print()

 This function prints on the LCD screen starting from the current position of the cursor.

Syntax:

 var.print(data);

var.print(data,base);

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

data: This is the data to be printed. This might be char, int, long, float or string.

base: This is optional and shows the desired numerical base: BIN=Binary; DEC=Decimal (by

default); OCT=Octal; HEX=Hexadecimal; or N=nº in decimals for floating-point numbers

(2 by default).

Examples:

int A=19;

float PI=3.1416;

lcd.print(A,HEX); //Prints A in hexadecimal (1910 = 1316)

lcd.print(“Hello”); //Prints “Hello”

lcd.print(PI*2,4); //Prints 6.2832 (four decimals)

• Function: cursor()

This function displays the cursor on the LCD screen in its current position as an underscore (_).

This is where it’ll start to write the next character.

Syntax:

var.cursor();

var: This is the name that defines the screen in question (established as LyquidCrystal()).

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

13

• Function: noCursor()

This function hides the LCD cursor.

Syntax:

var.noCursor();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: blink()

This function displays the LCD cursor on the screen in its current position as a solid intermittent

symbol (▓).This is where it’ll start to write the next character.

Syntax:

var.blink();

var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: noBlink()

This function hides the solid intermittent cursor (▓).

Syntax:

 var.noBlink();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: noDisplay()

This function turns the LCD screen off without losing whatever content there may be on it or the cursor’s

position.

Syntax:

 var.noDisplay();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

14

• Function: display()

This function connects the LCD screen and recovers the content displayed on it before noDisplay() was

executed.

 Syntax:

 var.display();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: scrollDisplayLeft()

 This function displaces the content (the text and the position of the cursor) displayed on the screen at

any given moment one place to the left.

 Syntax:

 var.scrollDisplayLeft();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: scrollDisplayRight()

This function displaces the content (the text and the position of the cursor) displayed on the screen at

any given moment one place to the right.

Syntax:

var.scrollDisplayRight();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: leftToRight()

This function automatically establishes which direction the cursor writes on the screen: from left to right.

This means that the characters are written from left to right without affecting the ones that have already

been written.

 Syntax:

 var.LeftToRight();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

15

• Function:rightToLeft()

This function reverses the direction the cursor writes on the screen: the right to left. This means that the

characters are written from right to left without affecting the ones that have already been written.

Syntax:

 var.RightToLeft();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: autoscroll()

This function activates the scrolling or automatic display movement. Each time a character is sent to the

screen this function displays it and then moves the rest of the contents one place. If the direction at the

time is left to right (leftToRight()), the contents moves to the left. If the direction at the time is right to left

(rightToLeft()), the content moves to the right.

Syntax:

 var.autoscroll();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: noAutoscroll()

This function deactivates the scrolling or automatic display movement.

Syntax:

 var.noAutoscroll();

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

• Function: createChar()

 This function creates a character defined by the user. It is capable of creating a total of eight 5 x 8 pixel

characters numbered from 0 to 7. A matrix of 8 bytes, one per row, determines a character’s appearance

or design. The five lightest bits of each byte correspond to the 5 pixels that make up each row of the

character. Once this function has created a character, the user can display it on the screen simply by

indicating its number.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

16

Syntax:

 var.createChar(n,dato);

 var: This is the name that defines the screen in question (established as LyquidCrystal()).

n: this represents the number of the character to be defined (from 0 to 7).

data: This is the name of the matrix that contains the bytes that define the custom character.

Example:

bytearrowhead[8]={B00100,B01110,B10101,B00100,B00100,B00100, B00100, B00100};

//Creates the 8 byte “arrowhead” matrix which defines the new graphic character

lcd.createChar(0, arrowhead);

//Creates the new nº 0 character from the defined content in the “arrowhead” array….

lcd.write(byte(0));

//displays the nº 0 graphic character (the arrowhead)

5. THE EEPROM DATA MEMORY

If you thought the following subject had nothing to do with what this unit is about, you’d be absolutely

right: it doesn’t. But it just happens to be a good time to talk about the Arduino UNO controller EEPROM

data memory. It’ll help you to enhance lots of your present and future projects.

 The controllers that comprise the various Arduino boards form part of a special memory: the

EEPROM memory. It enables you to read or write 8 bit data between 0 and 255. This memory has a

special feature: it retains all the information you’ve saved even if the power goes off; it doesn’t delete it.

That’s why it’s ideal for storing non volatile information that can be modified such as access codes,

configuration parameters, telephone numbers, passwords etc… As you are already aware, the NANO

Arduino board includes an ATmega328 model controller that has a 1KB (1024 bytes) EEPROM memory.

By this time you know more than enough to use it. You’ve got access to a library as well:

“EEPROM.h”. It’s got just two functions and you can use them to read and write data onto this memory.

As usual, you should include this library in your programs by using #include <EEPROM.h>.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

17

• Function:read()

This function reads the 8 bit data that’s on the EEPROM memory.

 Syntax:

 EEPROM.read(dir);

 dir: This determines which direction you read in from the EEPROM. It has 1024 positions (KB) so

the possible range is from 0 to 1023.

Example:

#include EEPROM.h //Includes the library

byte value; //8 bit variable

value = EEPROM.read(279); //Reads the byte in position 279

• Function:write()

 This function writes an 8 bit value (between 0 and 255) in any of the positions available in the EEPROM.

 Syntax:

 EEPROM.write(dir, value);

 dir: This determines which direction you write in from the EEPROM. It has 1024 positions (KB) so

the possible range is from 0 to 1023.

value: This is the 8 bit value (between 0 and 255) which you want to write in the direction indicated.

Example:

EEPROM.write(982, 33); //Write the value 33 in position 982

IMPORTANT: The EEPROM memory has an estimated capacity of 100,000 write/erase cycles. An

EEPROM write may take up to 3.3 mS to complete so you may need to be careful about how often you

write to it; if you go over the limit it could be disenabled. Keep it in mind.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

18

PRACTICE SECTION

6. CONNECTING THE LCD SCREEN

You’re going to start off the practical section by connecting the LCD screen to the Arduino controller

on the module board. Look carefully at the connections and make sure you assemble everything

properly. Here’s the circuit diagram:

 The D9:D12 Arduino pins are connected to the DB4:DB7 signals from the screen. Monitored by

your program Arduino will send the instructions and the characters to be displayed. D7 and D8 control

the RS and E signals respectively. RW must be connected to GND.

 The screen is powered by +5 V through the GND and the VCC pin. We send a variable voltage of

between 0 and 5 through the VLC pin, number 3, to adjust the contrast. We usually wire it to GND with

R1, a resistor. The resistor value may vary according to the screen model.

 As it’s impossible to predict exactly what kind you’ll come across, we’ll start off with a 1K Ω resistor.

If you notice that the characters seem too stark and you can hardly make them out, change the resistor

value for a higher one like 4K7 Ω, for example. You’re sure to hit on the right contrast somewhere

between these two figures.

Figure 5

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

19

We use pins 15 and 16 of the LCD screen to control the backlight although not all models have this

feature. We’re not going to use them and it is possible that your screen doesn’t even have these two

pins. If it does have them, don’t connect them.

 We recommend you start the assembly with the connection wires just like in the figure and the

photo. You’ll be installing the screen later and it just might cover one of these wires. Have a close look.

 Now position the LCD screen; make sure you insert pin 1 on the screen in the same column of

holes as the black GND wire, pin 2 in the same column as the red +5 V wire, pin 3 in the same column

as the resistor and so on and so forth.

Figure 6

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

20

You’re sure to think of some other way of connecting the components and it might even be better.

You should remember however that the LCD screen is going to stay connected for almost all of the rest

of the course. For this reason you should leave space on the module board for the components and

peripherals you’ll be using in the future.

Figure 7

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

21

7. EXAMPLE 3: Hello world!

Here’s the first program you’re going to use to display the famous message on the LCD screen.

 You can include the LCD function library by using #include. You can establish the lcd variable and

configure the connections using LiquidCrystal(). Make sure the connections correspond with the ones

in the circuit diagram for the assembly you’ve just done.

Select the 16 x 2 screen model using the lcd.begin(16,2) function in setup().

Last of all, the main loop() program transmits the message to be displayed using the lcd.print()

function. Next the message is placed on a continuous loop called while(1) that doesn’t really do anything

useful; in fact, you could call it the end of the execution.

8. EXAMPLE 2: The Screen

We suggest you do the following examples to familiarize yourself with some of the functions

included in the “LiquidCrystal.h” library and the various effects they produce.

You’re going to use the noDisplay() and display() functions to enable or disenable the screen: the

screen will go blank or display whatever content it has at the time.

9. EXAMPLE 3: The Cursor

 The cursor indicates where the next character it receives will be written on the screen. This

example uses the cursor() and noCursor() functions to enable the character to be displayed or not.

In theory the cursor is viewed as an underscore (_).

10. EXAMPLE 4: Blinking

The cursor can also be viewed as an intermittent solid symbol (▓) that indicates where the next

character it receives will be written on the screen. That’s what the blink() and noBlink() functions are

for.

The cursor flashes on and off spontaneously; the LCD screen controls it automatically. In the

example cursor is enabled and kept flashing for three seconds and then disenabled for another three so

you can see what these functions do.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

22

11. EXAMPLE 5: Text Direction

 By using the leftToRight() and rightToLeft() functions you can determine how you write and display

the text on the screen. You can write and display from left to right or from right to left. The cursor writes

from left to right by default, the same way we do when we write something.

This example shows you another way to display a message. This time the text is displayed in an

array:

 char Mens1[]={"ILove Arduino"}; //Message to be displayed

 Two for() loops send each character from the array to the screen at intervals of 0.150 seconds

using the lcd.write() function. The cursor goes to row 0 position 0 (row 0 is the first one on the LCD) in

the first for() loop and starts writing the characters from left to right as usual. The cursor goes to row 1

position 15 (the last one in second row) in the second for() loop and starts writing the characters from

right to left.

Next we change the time sequence to three seconds and the lcd.clear() function clears the screen.

Then there’s a final sequence of one second and then the cycle starts again.

12. EXAMPLE 6: Scrolling

The scrollDisplayLeft() and scrollDisplayRight() functions also enable you to achieve some nice

display effects – you must have seen them on billboards.

 These functions move whatever is on the screen at any given moment to the left or the right. This

example shows a two line text on the screen. Subsequently the entire text starts moving to the left from

one position to the next at 3 second intervals.

 When the last character disappears on the left the text starts to move again until it disappears on

the right. Then it starts to move to the left again until it finally returns to its original position. After that the

screen goes on and off for a while.

13. EXAMPLE 7: AutoScroll

This is another example that will enable you to create striking display effects. The autoscroll()

function moves all the text one space to the left each time a letter is added and noAutoscroll()

disenables the scrolling.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

23

When the auto scroll is enabled the function automatically moves each character written on the

screen. In the previous example you had to use the scrollDisplayLeft() or scrollDisplayRight()

functions to achieve this effect.

 The function moves the characters automatically to the left by default or to the right. It all depends

on the last function you used: leftToRight() or RightToLeft().

The following example shows two messages that were previously defined in two separate arrays:

char Mens1[]={"ARDUINO"}; //Message 1

char Mens2[]={"I'Love you"}; //Message 2

 The first for() loop writes the contents of the “Mess1” array on the screen character by character.

It automatically writes the characters from left to right at three second intervals.

 The second for() loop writes the contents of the “Mess2” array on the screen character by

character. However, prior to executing this loop, the cursor locates itself in the last position of the second

row of the screen and executes the lcd.autoscroll() function. It writes the characters from left to right but

each time it writes one it automatically moves the contents of the screen to the left by default.

Last of all lcd.noAutoscroll() is executed and after lcd.clear() clears the screen the cycle starts

again.

14. EXAMPLE 8: Custom characters

To finish up this section of examples that show us how to use the most useful functions in the

“LiquidCrystal.h” library, you’re going to create and use your own graphic characters.

To be more specific, you’re going to create five characters: a heart, a happy face, a serious face,

a figure with its arms up and another one with its arms down.

Each one of them is defined by using an array. These are the five figures: heart[8] ; happy[8];

serious[8]; down[8] and up[8]. Each of the characters contains a binary description of what points or

pixels should be enabled in each case.

The lcd.createChar() functions transfer the content of the arrays to the screen CGRAM memory

during setup(). The functions transfer a total of 40 bytes, eight per character. In addition to this, each of

the characters is assigned a number between 0 and 5:

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

24

Figure 8

lcd.createChar(0, heart); //Create new character nº 0

lcd.createChar(1, happy); //Create new character nº 1

lcd.createChar(2, serious); //Create new character nº 2

lcd.createChar(3, down); //Create new character nº 3

lcd.createChar(4, up); //Create new character nº 4

Last of all, you can display each graphic character on the screen wherever the cursor is as if it were

a normal ASCII character. All you have to do is use the lcd.write(n) function, “n” being the number

assigned to each character as in the example 0 to 5.

15. EXAMPLE 9: Display

Here’s an example that’s really practical. You’re going to create a link between the serial

communications channel on your PC and the LCD screen. Naturally the NANO Arduino controller will

be in the middle.

The controller functions as a bridge between the two. On one side it’s connected to the PC through

the USB port; on the other, it’s connected to the screen in the same way we’ve been connecting it up

until now. Using a serial monitor, you’re going to send a number of characters from the PC using the

serial communications channel; they’ll be received by the Arduino controller and displayed on the LCD

screen as they arrive.

16. EXAMPLE 10: Displaying whole numbers

You’ve already seen how you can display all kinds of texts and characters on the LCD screen and

also achieve different kinds of display effects. You can also display numbers as well of course.

 This example is going to display the numbers from 1 to 15 in sequence each time you push a

button connected to the D2 pin. In addition, the number in question will be displayed as a decimal,

hexadecimal and binary number.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

25

The program won’t present any difficulties at all given what you know now. Here’s a small detail

that’ll come in handy all the time: as the numbers you’ll be displaying have different lengths, it’s a good

idea to delete the first line of the LCD screen where you’re going to display them. You can do this by

filling up the line in question with blank spaces (“ “); that way there are no “leftovers”.

Have a close look at the program. Try and take out the first two loop() functions and see what

happens: I think you’ll get what I mean by “leftovers” now.

17. EXAMPLE 11: Displaying floating-point numbers

 Following on from the above example, we’re going to talk about displaying floating-point numbers.

In this case, we’re going to display the square root of the number N to two decimal places and N

multiplied by the PI (3.1416) constant to four decimal places. The number N advances sequentially each

time you push the D2 button; it goes from 0 to 9.

Both the circuit diagram and the assembly are the same ones you used for the previous example

10.

18. EXAMPLE 12: Menu

An LCD screen in an ideal peripheral for making an intuitive user interface. And in fact there are

menus of options that enable you to make a selection from the different tasks to be executed.

In this example the idea is to make a menu of six options that appear on the screen one after the

other. By using one button to go forward and another to go back, you’ll be able to browse through the

menu and have a look at all the available options. Here’s what the circuit diagram looks like:

Figure 9

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

26

The connections between the Arduino controller and the screen are the same as the ones you’ve

been using up until now. In this case there’s a second button called SW2. The SW1 button is connected

to the D2 entry and the options available are shown on the screen from first to last. When we connect

the SW2 button to the D3 pin we can see the options in reverse order: from last to first. Both pins are

configured as pull-up resistors. This way you save yourself having to fit the two corresponding external

resistors.

The screen does a vertical scroll to display all the options available on the menu one after the other.

We’re also going to use a piezo electric buzzer connected to the D13 output pin. When either the SW1

or the SW2 button is pushed they make a noise.

Now you’re going to have a look at the program. I’ll leave it up to you to study and examine it and

try and understand how it works. All I’ll say is that I’ve tried to find the easiest and most instructive

solution possible; I’m sure it’s not the only one around or even the best; I hope you can make it a lot

better using your own initiative.

Start:

First of all you include the “LiquidCrystal.h” library and connect up the screen; nothing new there.

Next you declare the Option and N option variables. The first one contains the option that’s in use at the

time and the second one the number of options available on the menu. You also have to declare an

arrowhead array that defines the graphic characters.

Functions:

Two functions have been created for this project: visualize() and beep(). The first displays the

message on the screen that corresponds to the option in use at the time based on the value of the

“Option” variable. And you’ve already seen the beep() function: it makes a beeping sound.

Setup():

Configure the D2 and D3 pins as inputs with internal pull-up resistors, the D13 pin as an output,

the screen with two lines of 16 characters and finally generate the graphic character nº 0 (an arrowhead).

There’s not really anything important here.

loop():

• begins by clearing the screen and displaying the graphic character nº 0 (the arrowhead).

• locates the cursor on the first row and displays the option in use at the time based on the

“option” variable. It uses the visualize() function.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

27

• locates the cursor in the second row and displays the following option (Opcion+1). Once

again it uses the visualize() function.

• waits until someone pushes the SW1 or SW2 pushbuttons connected to D2 and D3.

• if D2 is pressed it eliminates debouncing and waits until the button is released. It makes a

whistling sound and increases the “Option” variable. It goes on to the next option on the

menu.

• if D3 is pressed it eliminates debouncing and waits until the button is released. It makes a

whistling sound and increases the “Option” variable. It goes back to the previous option on

the menu.

19. EXAMPLE 13: Option selection

Think of it as an extension of the previous example. Have a look at the circuit diagram

We add another button SW3 connected to D4; it executes the option selected at the time. We add

two more LED screens as well: a red one and a green one connected to D5 and D6. They show the

result of executing the option.

This program is very similar to the previous example. The only difference is the Execute() function

which runs every time the SW3 pushbutton is pressed. This new function assesses the value of the

“Option” variable. Depending on what option has been selected, the appropriate task is executed and

enables or disenables the red and green LED screens connected to the D5 and D6 outputs.

Figure 10

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

28

20. EXAMPLE 14: One last improvement

Imagine an application that doesn’t have just six options on its menu like the ones up until now: it’s

got tens of them. Every time you turn the system on or restart it by pressing RESET, it always begins

from the first option; you’ll have to scroll down until you find the one you want.

Maybe it’d be a good idea if the LCD screen showed the last option you’d selected so that you

didn’t have to go and look for it every time you restarted the system: what do you reckon? Once again

you could use the EEPROM data memory. That’s right: every time you choose a new option, it’s

recorded in the EEPROM memory. At the end of the day, each option is represented with nothing more

than a number saved in the “Option” variable.

Every time the system is restarted, this variable is assigned the last value recorded in the EEPROM

memory. You’ll be using position 1 of the 1024 available.

Record the program and make sure it works. Select and execute the various options. Then switch

the system off and then turn it on again. See how the last option you selected always appears.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

29

REFERENCES

BOOKS

[1]. EXPLORING ARDUINO, Jeremy Blum, Ed.Willey

[2]. Practical ARDUINO, Jonathan Oxer & Hugh Blemings, Ed.Technology in action

[3]. Programing Arduino, Next Steps, Simon Monk

[4]. Sensores y actuadores, Aplicaciones con ARDUINO, Leonel G.Corona Ramirez, Griselda

S. Abarca Jiménez, Jesús Mares Carreño, Ed.Patria

[5]. ARDUINO: Curso práctico de formación, Oscar Torrente Artero, Ed.RC libros

[6]. 30 ARDUINO PROJECTS FOR THE EVIL GENIUS, Simon Monk, Ed. TAB

[7]. Beginning C for ARDUINO, Jack Purdum, Ph.D., Ed.Technology in action

[8]. ARDUINO programing notebook, Brian W.Evans

WEB SITES

[1]. https://www.arduino.cc/

[2]. https://www.prometec.net/

[3]. http://blog.bricogeek.com/

[4]. https://aprendiendoarduino.wordpress.com/

[5]. https://www.sparkfun.com

https://www.arduino.cc/
https://www.prometec.net/
http://blog.bricogeek.com/
https://aprendiendoarduino.wordpress.com/
https://www.sparkfun.com/

