

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

1

UNIT 5: ANALOG SIGNALS

AIMS

Up until now we’ve assumed that Arduino only uses digital signals with levels of “1” or “0”. Input

signals can come from pushbuttons, switches, detectors and many other sources but must be

preceded by a “1” or a “0”. Output signals can power LED lights, relay switches, motors and

many other devices but once again we must write a “1” or a “0” level to them.

But not everything in the natural world is digital. There are also what are called “analog” signals

and their value or voltage may vary between a minimum and maximum over a period of time.

Even Arduino controller, like the majority of modern controllers, is capable of generating width

modulated digital signals. They’re called “PWM” (“Pulse Width Modulation”) or “PDM” (Pulse-

duration Modulation) signals.

In this unit you’re going to study what these signals are like, how to use them and what you

can do with them. You’ll be learning about the functions in Arduino language that manipulate

the controller’s analog inputs.

THEORY SECTION

• INTRODUCTION

• DIGITAL CONVERSION

• RESOLUTION

o And now it’s your turn

• FUNCTIONS IN ARDUINO LANGUAGE

• ANALOG PERIPHERALS

o Potentiometers

o Photo sensors

o IR reflective sensors

o Air conditioners

• PSEUDO ANALOG OUTPUT

o What are PWM signals?

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

2

o What are they used for?

o How are they generated?

▪ The analogWrite() function:

• Further functions in Arduino language

o The random() function

o The randomSeed() function

 PRACTICE SECTION

• EXAMPLE 1: ADC Conversion

• EXAMPLE 2: Thresholds

• EXAMPLE 3: Analog comparator

• EXAMPLE 4: Brightness control

• EXAMPLE 5: Electric rudder

• EXAMPLE 6: Photometer

• EXAMPLE 7: Lighting control

• EXAMPLE 8: Measuring reflections

• EXAMPLE 9: Detecting colours

• EXAMPLE 10: Temperature

• EXAMPLE 11: Air handler

• EXAMPLE 12: A PWM signal

• EXAMPLE 13: Optical effects

• EXAMPLE 14: Manual regulation

• EXAMPLE 15: Random lights

PRACTICE MATERIALS

-Lap top or desk top computer

-Arduino IDE work environment; this should include the supplementary material already installed and

configured.

-Arduino UNO controller board

-A USB cable

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

3

TABLE OF CONTENTS

THEORY SECTION ... 4

1. INTRODUCTION ... 4

2. DIGITAL CONVERSION ... 5

3. RESOLUTION .. 7

A. AND NOW IT’S YOUR TURN ... 8

4. FUNCTIONS IN ARDUINO LANGUAGE .. 9

5. ANALOG PERIPHERALS .. 11

A. POTENTIOMETERS .. 11

B. PHOTO SENSORS .. 12

C. IR REFLECTIVE SENSORS .. 12

D. TEMPERATURE SENSOR ... 13

6. PSEUDO ANALOG OUTPUT .. 13

A. WHAT ARE PWM SIGNALS? ... 14

B. WHAT ARE THEY USED FOR?.. 15

C. HOW ARE THEY GENERATED? ... 16

7. FURTHER FUNCTIONS IN ARDUINO LANGUAGE .. 17

PRACTICE SECTION ... 18

8. EXAMPLE 1: ADC CONVERSION .. 18

9. EXAMPLE 2: THRESHOLDS .. 19

10. EXAMPLE 3: ANALOG COMPARATOR .. 19

11. EXAMPLE 4: BRIGHTNESS CONTROL ... 19

12. EXAMPLE 5: ELECTRIC RUDDER ... 20

13. EXAMPLE 6: PHOTOMETER .. 20

14. EXAMPLE 7: LIGHTING CONTROL ... 21

15. EXAMPLE 8: MEASURING REFLECTIONS .. 21

16. EXAMPLE 9: DETECTING COLOURS ... 22

17. EXAMPLE 10: TEMPERATURE SENSORS ... 22

18. EXAMPLE 11: AIR CONDITIONERS .. 22

19. EXAMPLE 12: A PWM SIGNAL ... 23

20. EXAMPLE 13: OPTICAL EFFECTS .. 23

21. EXAMPLE 14: MANUAL REGULATION ... 23

22. EXAMPLE 15: RANDOM LIGHTS ... 24

REFERENCES ... 25

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

4

THEORY SECTION

1. INTRODUCTION

 The expression “analog input signals” may have come up at some point during the course but

just what are they, what are they used for, where are they and how are they controlled? The time has

come to answer these questions.

You’re already aware that everything in the “digital” world works on the assumption that there

are only two possible values or levels: level “1”and level “0”. A pushbutton, a switch or a detector can

be on (“1”) or off (“0”). A LED light, relay switch or a motor can be turned on or off. Sound is nothing

more than a signal that goes from level “1” to level “0” at a given speed or frequency. A PWM signal is

digital and we can vary the length of the level “1” or duty cycle and thus regulate the voltage. Serial

communication is nothing more than the transfer of bits with levels of “1” and “0”.

When we’ve got a number of bits we put them together into bytes and use them to create

different sized numbers, encode characters and send messages. In any case, this is the way you’ve

been working up until now.

Nevertheless, the “real” world isn’t like that. We come across physical quantities in the natural

world that may have multiple values or other features. In any case, I’m sure you’re only too well aware

that not everything is black and white; there are greys as well.

Have a think about room temperature for instance. This is a physical quantity that changes

constantly. The temperature isn’t the same in the morning as it is at midday or in the evening. If we had

a sensor that could measure the temperature and generate a voltage proportional to it, we’d see that it

varied constantly over time more or less.

Temperature is an analogical physical quantity. The sensor delivers a voltage of 2 V at 5 0’clock

in the morning. At 9 o’clock the temperature goes up and therefore the voltage does too; it rises to 4 V.

At 3 o’clock the voltage reaches 5 V and from 4 o’clock onwards it starts to fall with the temperature. All

we have to do is look for a relationship between the temperature and the voltage the sensor delivers.

Now have a think about the huge number of analogical physical quantities all around us. Using

suitable sensors or “transducers” you can transform these physical quantities into equivalent analog

voltages:

✓ Humidity and/or relative humidity. This enables us to calculate the amount of water vapour in

the atmosphere.

✓ Atmospheric pressure. We can find out the pressure the air exerts on the Earth using a suitable

sensor.

✓ Weight. We can measure the force a body exerts on a point at rest.

✓ Speed. If you had a suitable sensor you could measure how fast the air moves or how fast a

vehicle moves or how fast you move.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

5

✓ Light. You can measure the ambient light or the light that strikes an object. There are sensors

that detect visible light, infrared light, ultraviolet light and others as well.

✓ Sound. We can measure, study and/or detect noises, ambient sound, volume and other acoustic

phenomena.

There are many other areas sensors or “transducers” that can transform physical quantities into

equivalent analog voltages.

2. DIGITAL CONVERSION

As you may well imagine, there are all types of sensors and “transducers” that are able to

measure and deliver analog voltage equivalent to the physical quantity they’re measuring. Unfortunately,

no digital system is able to handle or process these analog currents directly; not even Arduino.

The very first thing we have to do is convert the analog voltages into their equivalent digital or

binary values. To perform this conversion we use electronic circuits called “analog-to-digital converters”,

abbreviated to “ADC”.

Have a look at the Figure 1. It shows the components you need to process an analogical physical

quantity like temperature, for instance.

Figure 1

1. The sensor detects the physical quantity it’s designed to measure; in this case it’s temperature.

It usually generates a voltage proportional to the physical quantity.

2. The voltage is then fed into the analog-to-digital converter (ADC). The circuit gives out a binary

value equivalent to the input voltage.

3. The binary value can now be read by a controller like Arduino.

4. The controller can perform any kind of process with this binary value: store it in the memory,

perform arithmetical or logical operations, display it, transfer it to another system and lots of

others.

Just about all modern controllers including Arduino have an integrated ADC converter circuit.

All you have to do is connect up the appropriate sensor or transducer to the analog input pin. The type

of sensor or transducer you use will depend on the physical quantity you’re going to measure.

And what’s more, these controllers usually have a number of input pins for analog signals. Have

a look at the figure on the left. Most controllers only have one ADC converter circuit with a number of

Digital

Processing

(+,-,&,*,|)

ADC converter

(100100101)

Temperature

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

6

input pins or “analog channels” connected to it. Arduino UNO has a single converter and six analog input

pins connected to it: numbers A0 to A5. This enables it to take samples of analog voltages from as many

as six different sensors.

Of course you can only take one sample at a time. By using suitable functions you can convert

the voltages on each analog input channel one at a time. We say that the input channels are

“multiplexed”.

Have a close look at the figure Figure 2. Every time you request a conversion the ADC converter

takes a sample of the analog voltage on the input channel you’ve specified. The result, or its binary

equivalent, is obtained in 100 µS (0.0001”), which is how long it takes to perform the conversion. Arduino

can perform approximately 10,000 conversions a second.

The analog voltage is 2 V at the first point in time. The ADC converter generates a value or

binary number equivalent to this voltage. The analog voltage is 2.8 V at the second point in time, 3.5 V

at the third, 4.2 V at the fourth and so on and so forth. You can see what an analog signal is like: it

fluctuates constantly between a minimum – 0 V in the example - and a maximum - 5 V.

I’ve already said that Arduino UNO takes approximately 100 µS to perform a conversion. This

is quite fast but there are others that can do it a lot faster. Have a look at the Figure 3. It shows an

analogical signal with a frequency, F, of 1000 Hz. Its period, T, is 1000 µS (1 mS). This means that

Arduino would be able to take ten samples of the signal at the most (1000 µS / 100 µS).

If you had an analogical signal with a frequency, F, of 500 Hz and a period, T, of 2000 µS, you

could take a total of twenty samples of it (2000 µS / 100 µS). This means that you’d get a more exact

“digitalization” than when the frequency of the analog signal was 1000 Hz.

Figure 2

Figure 3

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

7

You don’t always have to take that many samples per second. Remember the sensor that

measures the room temperature? This is a physical quantity that doesn’t modulate very much. The

temperature doesn’t rise from -10ºC to +15ºC in 0.0001 seconds. The same thing happens with natural

light. We don’t go from night to day in 100 µS. And what about weight? Nothing weighs 75 kg one

moment and 31 kg 100 µS later. The same applies to other physical quantities like speed, atmospheric

pressure, humidity and many others.

Arduino UNO’s conversion speed is more than enough to measure most analogical physical

quantities!

3. RESOLUTION

In addition to the conversion speed, another important factor in an ADC converter circuit is its

precision or “resolution”. We say that the converter incorporated into the Arduino UNO has a resolution

of 10 bits. This means that the result of a conversion may have 1024 possible binary values (210).

How do we establish a relationship between the analog voltage and the binary value? We need

to know a constant called the “reference voltage” or VREF which is the voltage the converter circuit uses

to perform its internal operations. We calculate the resolution per bit using the following equation which

depends on both the VREF and the number of bits the converter’s got. Assuming that VREF = 5V:

 If you know this you can predict the binary output value the converter gives you based on the

analogical input voltage. Have close look at the following table.

 INPUT

VOLTAGE
OUTPUT

OUTPUT

VOLTAGE
OUTPUT

 BINARY DEC. HEX. BINARIO DEC. HEX.

0.000 0000000000 0 0x000 2.500 1000000000 512 0x200

0.005 0000000001 1 0x001 3.000 1001100110 614 0x266

0.010 0000000010 2 0x002 4.000 1100110011 819 0x333

0.015 0000000011 3 0x003 4.985 1111111100 1020 0x3FC

0.020 0000000100 4 0x004 4.990 1111111101 1021 0x3FD

1.000 0011001100 204 0x0CC 4.995 1111111110 1022 0x3FE

2.000 0110011000 408 0x198 5.000 1111111111 1023 0x3FF

All you have to do is divide the analog input voltage by the converter’s bit resolution, which in

this case is 0.0048.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

8

A. AND NOW IT’S YOUR TURN

Assuming that the VREF reference voltage is 3 V and the converter has a resolution of 8 bits,

complete the following table for each different analog input voltage.

BIT RESOLUTION

INPUT

VOLTAGE
OUTPUT

OUTPUT

VOLTAGE
OUTPUT

 BINARY DEC. HEX. BINARIO DEC. HEX.

0.00 1.50

0.01 1.67

0.50 1.85

0.65 2.12

0.83 2.57

0.95 2.93

1.15 3.00

.

THE FOLLOWING IS VERY IMPORTANT! The analog input voltage that you measure must NEVER
exceed the VREF reference voltage. For instance, if the VREF = 5 V, the analog input voltage must also
be 5 V at the most.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

9

4. FUNCTIONS IN ARDUINO LANGUAGE

Using the ADC converter incorporated in the Arduino UNO couldn’t be any easier. You need

just two functions from the Arduino programming language.

• The analogReference() function

This function makes it possible to set the value of the reference voltage (VREF) the ADC

converter circuit has to use to convert an analog voltage into its binary or decimal equivalent.

This is important because once you know what it is, you can calculate the resolution per bit as

you did previously.

The VREF voltage must not exceed the voltage that powers the Arduino UNO controller (5 V).

On the other hand, the analog input voltage you convert may not exceed the VREF.

Syntax:

analogReference(type);

type: Configures the VREF used for analog input (i.e. the value used as the top of the input range). The

options are:

DEFAULT: the default analog reference of 5 volts (on 5V Arduino boards) or 3.3 volts (on 3.3V

Arduino boards).

INTERNAL: This is a VREF generated within the controller. In the case of Arduino UNO it’s 1.1 V

EXTERNAL: The required VREF is delivered on the controller’s AREF pin.

Example:

analogReference(INTERNAL); //The internal voltage of 1.1 V is used

• The analogRead() function

This is the sentence you’re going to use when you want to perform an analogical to digital

conversion. Each time it’s executed it takes a sample of the voltage on the analog pin or channel

specified and then performs the conversion.

Syntax:

analogRead(pin);

pin: The pin number that corresponds to the analog channel you want to convert. In the case of

Arduino UNO this could be from A0 to A5.

Example:

int V;

V = analogRead(A2); //Performs the conversion of the voltage on A2

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

10

• The map() function

Even though this function isn’t expressly designed for ADC conversion it may well be of interest

for what we’re doing at the moment. It makes it possible to remap, reassign or redefine a value between

a minimum and a maximum.

Let’s see; you already know that the Arduino ADC converter has a resolution of 10 bits and can

express a value between 0 and 1023 (210). On the other hand, the numbers Arduino works with come

in packets of bytes (8 bits) or multiples of bytes (int, unsigned int, long and unsigned long). Sometimes

it’s better to use the result of a conversion (10 bits) as if it were a byte between 0 and 255 (8 bits) or an

int (16 bits) and so on. Bytes or integers are much more standard formats.

Syntax:

map(value, fromLow, fromHigh, toLow, toHigh);

value: the number to map. It’s usually an int (16 bits) or a long (32 bits). Float values can’t be used.

fromLow: Expresses the lower bound of the value's current range.

fromHigh: Expresses the upper bound of the value's current range.

toLow: Expresses the lower bound of the value's target range.

toHigh: Expresses the upper bound of the value's target range.

Example:

int V;

V = analogRead(A2); //Performs the conversion of the voltage on A2

V = map(V,0,1023,0,255); //Reassigns the value it’s read and converts in into a byte

The analog value read on pin A2 lies between 0 and 1023 and is stored in the “V” variable. This

value is remapped to an equivalent between 0 and 255. According to Arduino this function is derived

from the following mathematical calculation; we include it purely for interest’s sake:

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

11

Figure 4

5. ANALOG PERIPHERALS

There’s a broad range of sensors on the market that can provide analog voltage between a

minimum and maximum depending on the physical quantity in question. You can regard them as analog

peripherals.

✓ Analog Potentiometers. Moving the shafts gives a variable analog voltage of between 0 and

5 V. They’re connected to the A0 and A1 pins and you can regard them as analogical motion

sensors.

✓ Light sensor. This is connected to the A2 pin. The voltage it generates depends on the

amount of ambient light that strikes it.

✓ Infrared Sensor. This is non-visible infrared light (IR) reflective sensor. It’s connected to the

A3 pin and measures the IR light that strikes it.

✓ Temperature Sensor. This measures the room temperature and generates voltage in

proportion. It’s connected to the A4 pin.

A. POTENTIOMETERS

These are variable resistors and you can modify their value by moving the shaft or a control

called the “wiper”. I’ve no doubt that you’ve used one lots of times without realizing it; the control you

use to adjust the volume of a radio, television or sound system are some examples.

They’re the simplest and most economical analog peripherals you’ll find. They come in all

shapes and sizes.

It’s got three terminals or pins. Pins 1 and 2 are at each end of the resistor. They represent its

total value. Pin 3 is the wiper. There’s a mechanism that moves it from one end of the resistor to the

other thus varying its value. If you were to position it right at the mid-point of its travel between pins 1

and 3 you’d get half the resistance. If you put it between pins 3 and 2 you’d get the other half.

Now have a look at what the connections of both potentiometers. The ends are connected to 0

V and +5 V. If you move the wiper towards the bottom end, to the left that is, the analog voltage will

decrease until it reaches 0 V. If you move it in the opposite direction the voltage will increase until it

reaches a maximum of +5 V. The wipers of both potentiometers are connected to the analog input pins

A0 and A1 on the controller.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

12

B. PHOTO SENSORS

This is based on a small device called a “phototransistor”. Dispensing with lengthy technical

explanations, we could say that this component increases or decreases the amount of current that

passes through it based on the amount of light that strikes it. There are ones that are visible or ambient

light sensitive and others that are infrared light (IR) sensitive. They come in a range of shapes and sizes.

As is shown in the figure on the right, we can use a torch to modulate the amount of light that

strikes the sensor. This increases or decreases the electrical current, I, that flows through it. This current,

I, circulates through a resistor, R, and produces a voltage, V, that also varies proportionally: V = R * I.

To sum up: when the light changes, the intensity of the current, I, does too and this in turn modulates

the voltage, V, between entre 0 and 5 V. This voltage is delivered to the A2 analog input of the Arduino.

C. IR REFLECTIVE SENSORS

This is another kind of light sensor: it detects infrared light (IR) not visible to the human eye. It

detects the amount of reflected light that strikes it. The sensor comprises two components. The LED

light or emitter (E), which runs on +5 V, gives off a constant beam of infrared light. When this is reflected

off an object, it strikes the photodiode or receiver (R) which absorbs the light. Depending on the amount

of reflected light, the receiver increases or decreases the intensity, I, it feeds into the resistor, R, which

in turn increases or decreases the analog voltage, V. Remember: V = R * I. To sum up: the closer the

object, the greater the amount of reflected light. The intensity, I, is greater and therefore the voltage, V,

is too. This voltage is applied to the A3 analog input pin on the Arduino UNO.

Figure 5

Figure 6

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

13

D. TEMPERATURE SENSOR

LM35 device, this component has three pins. Two of them are connected to the supply voltage

of 0 and +5 V. The intensity, I, which circulates through the third pin, is directly proportional to the

temperature. This intensity goes across the resistor, R, and this creates a voltage, V (V = R * I). It’s

connected to the A4 analog input pin.

According to the manufacturer of this device, the sensor’s resolution is 10 m V/ºC. You can use

the following equation based on the analog voltage (Va) to calculate the room temperature in degrees

centigrade

6. PSEUDO ANALOG OUTPUT

The Arduino platform and digital inputs and outputs. You saw that Arduino UNO controller board

has 14 pins that can be configured as digital inputs or outputs. In fact you’ve used most of them in

exercises that you’ve been doing up until now.

You may remember that six of these pins can function as PWM signal output pins as well. Just

for good measure, have a look at the figure on the right. I’m talking about pins 3, 5, 6, 9, 10 and 11, the

ones preceded by the “~” sign; they’re got an arrow pointing at them too.

You’re going to use them as PWM signal outputs in this unit. You can get an idea of what the

pins look like when they’re connected to the development board by looking at the figure on the left.

PWM signal outputs numbers 6, 9, 10 and 11 are connected to the LEDs. Numbers 3 and 5,

which are also PWM signal output pins, make it possible to connect up two servomotors or a DC motor;

we’ll connecting two servomotors in this unit.

Figure 7

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

14

A. WHAT ARE PWM SIGNALS?

The abbreviation “PWM” stands for “Pulse Width Modulation”, an “asymmetric” periodic digital

signal of “1”s and “0”s which is repeated constantly at the same frequency, F (there are X number of

cycle repetitions in a second). This means that the time the signal is at level “1” may be completely

different to the time the signal is at level "0".

Have a look at the signal in the Figure 8; we’re going to work on it now. It’s a digital signal with a

period, T, of 2 mS. In other words, there are 500 identical cycles in a second (1000 mS/2). The

frequency, F, is therefore 500 Hz (F=1/T).

In this case the level “1” of each cycle lasts the same time as the level “0”: 1 mS (if we add level

“1” and level “0” they equal 2 mS of the period, T). This is called a “symmetrical” signal. The time the

signal is on level “1” is called a “duty cycle”. Its value is 50% (1 mS) of the total value of the period in

the example. This is called a 50 % PWM signal.

Let’s have a look at the four PWM signals in the figure below. They’ve all got the same period,

T, of 2 mS, or a frequency, F, of 500 Hz, which actually amounts to the same thing. However the duration

of the level “1”, that is to say the duty cycle, is different in all of them.

Figure 8

Figure 9

DUTY CYCLE 0%

DUTY CYCLE 0%

DUTY CYCLE 100%

DUTY CYCLE 100%

DUTY CYCLE 25%

DUTY CYCLE 25%

DUTY CYCLE 75%

DUTY CYCLE 75%

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

15

Figure 10

✓ Signal A. This is a PWM signal with a duty cycle of 0% of the period length. In other

words, it remains at level “1” for 0 mS (0% * 2 / 100) and at level “0” for 100% of the

remaining time, that is to say, 2 mS (100% * 2 / 100).

✓ Signal B. This is a PWM signal with a duty cycle of 25% of the period length. In other

words, it remains at level “1” for 0.5 mS (25% * 2 / 100) and at level “0” for 75% of the

remaining time, that is to say, 1.5 mS (75% * 2 / 100).

✓ Signal C. This is a PWM signal with a duty cycle of 75%. It remains at level “1” for 1.5

mS (75% * 2 / 100) and at level “0” for 25% of the remaining time, that is to say, 0.5 mS

(25% * 2 / 100).

✓ Signal D. This is a PWM signal with a duty cycle of 100%. It remains at level “1” for 2

mS (100% * 2 / 100) and at level “0” for 0% of the remaining time, that is to say, 0 mS

(0% * 2 / 100).

I’ve already mentioned that most modern controllers are capable of generating one or more

PWM signals on some of their pins. In the case of Arduino UNO these pins are 3, 5, 6, 9, 10 and 11.

When you use any of them as PWM outputs you must know the frequency, F, of the signals that Arduino

generates. Have a look at the table:

PIN Nº FREQUENCY, F PERIOD, T

5 and 6 980 Hz 1.02 mS or 1020 µS

3, 9, 10 and 11 490 Hz 2.04 mS or 2040 µS

B. WHAT ARE THEY USED FOR?

I’m going to try and avoid complicated technical terms. We can control the time we remain on

level “1” for each period with PWM signals; this is called the duty cycle. We can also use them to control

and adjust the voltage we supply to certain output peripherals like light globes, LED lights, a motor, a

servo and others.

Suppose a PWM signal like the one shown in the Figure 10 is connected to a LED light. The duty

cycle is 50% so the LED is on for half the time and off for the other half. Believe it or not, the LED will

only shine at half brightness for each period.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

16

For the same reasons, if the duty cycle is 0%, the signal will remain on level “0” permanently.

The LED won’t shine. If the duty cycle is 25% the LED will shine at a quarter of its brightness and if the

duty cycle is 75% it will shine at three quarters of its full brightness. If the duty cycle is 100% the signal

remains on level “1” permanently. The LED will shine at full brightness. This gives us a range of between

0% and 100% of the PWM signal to achieve the required brightness.

In the same way that you can adjust the brightness of a LED light or a lamp, you can also adjust

the speed of a motor or the position of a servo’s shaft. The principle is the same and you’ll soon be able

to experiment with it. You should also be aware that there a good number of peripherals that are

controlled using PWM signals.

C. HOW ARE THEY GENERATED?

The controllers capable of generating PWM signals have a series of built-in electronic circuits

like oscillators, timers, comparators, registers and others; they’re fairly complex. By synchronizing all

these instruments and making them work together, we can generate one or more signals of this type.

However, you need quite a lot of technical expertise to get all that working.

Fortunately Arduino makes things really easy for us. Forget about electrical circuits, how they

work and how to use them. All you need is a single function from the programming language to generate

a PWM signal; Arduino takes care of the rest.

• The analogWrite() function

This function makes it possible to adjust the length of the duty cycle of a PWM output signal.

Syntax:

analogWrite(pin, value);

pin: the pin to write to. This refers to the pin that’s going to generate the PWM signal. Remember that

our Arduino UNO controller can use pin numbers 3, 5, 6, 9, 10 and 11.

value: determines the length of the duty cycle. It’s a byte number between 0 and 255. The value 0

represents 0% of the duty cycle, 127, a duty cycle of 50%, and 255 corresponds to a PWM signal

with a duty cycle of 100%.

Example:

byte Voltage = 25; //States the % of the required voltage

int Cycle= Voltage*255/100; //Calculates a duty cycle length of between 0 and 255

analogWrite(6,Cycle); //Generates a PWM signal of 25% on pin 6

You don’t have to configure the pin that generates the PWM signal as an output; it’s already in

the function. The pin generates the PWM output signal indefinitely until you execute the analogWrite()

function again with a different value or the digitalRead() or digitalWrite() functions on the same pin. In

all of these three cases the output of the PWM signal terminates.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

17

7. FURTHER FUNCTIONS IN ARDUINO LANGUAGE

Even though the following functions don’t have anything to do with PWM signals, we’re going to

take a look at them any way so you can broaden your knowledge of the language itself; they’re also

interesting to talk about.

They’re related to the generation of random numbers, that is to say, numbers of any value within

certain limits.

• The random() function

This function generates a random number between a minimum and a maximum. It returns a 32

bit signed integer value (long).

Syntax:

random(min, max);

min: establishes and includes the minimum value of the random number to be generated; it’s optional.

If the minimum value isn’t indicated it’s 0.

max: establishes but excludes the maximum value of the random number to be generated.

Example:

//Imitate the rolling of two dice

byte Die_1;

byte Die_2;

Die_1 = random(1,7); //Generates a random number between 1 and 6

Die_2 = random(1,7); //Generates a random number between 1 and 6

• The randomSeed() function

This is another system Arduino uses to generate random numbers. It consists of a sequence or

long list of numbers and it’s always the same. You can start generating the random numbers from

anywhere in the list or sequence.

Syntax:

randomSeed(value);

value: this can be any 16 bit integer (int) or 32 bit integer (long). It’s used as a “seed” to start off the

sequence of random numbers at any point. The more random the “seed” is, the more random the

sequence will be.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

18

PRACTICE SECTION

8. EXAMPLE 1: ADC conversion

Here’s the first exercise and it’s about as easy as they come. All you have to do is read the

analog value that you feed in using the potentiometer connected to the A0 pin. The conversion is

performed each time you press the pushbutton connected to pin 4. The idea of this exercise is to

reinforce the knowledge you’ve acquired in the previous units so serial communication and a range of

formats are used to deliver the result of the conversion to the PC.

The really novel aspect of this example has been highlighted in the Figure 11. The

analogRead(A0) function reads and converts the analog signal on the AO input into its equivalent in

binary code and saves it in the “AN0” variable.

This value is converted into voltage by multiplying it by the constant, 0.0048 (the resolution in

bits), and is saved in the “V” variable. Last of all the results are transmitted using serial communication

in decimal, binary and hexadecimal formats and in voltage. The figure on the left shows a number of

conversions. Start with the potentiometer all the way to the left (0 V) and move it gradually until you get

all the way to the right (5 V).

Figure 11

Figure 12

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

19

9. EXAMPLE 2: Thresholds

You can of course perform any sort of operation with the binary value of a conversion. You’re

going to perform two conversions in this exercise: one with the potentiometer connected to the A0 analog

input and one with the potentiometer connected to the A1 analog input. If the result of the conversion

on the A0 input is more than 4 V, the red light goes on. If the result on the A1 input is more than 2.5 V,

the white light goes on. If the results are less than the voltages indicated the LED lights remain off.

When you upload the program make sure the red light goes on when you turn the shaft of the

potentiometer almost all the way to the right; also make sure that you only have to turn the shaft of the

potentiometer halfway to the left so that the white light goes on.

Remember that a potentiometer performs like a kind of joystick and you can detect what position

it’s in.

10. EXAMPLE 3: Analog comparator

Based on the previous exercise, we can create programs that compare two voltages or signals

and say if one is greater than the other or if they’re both the same. This is what we want you to do in

this exercise.

We compare two analog voltages, V1 and V2, connected to the A0 and A1 pins; both come from

the potentiometers. The output LEDs go on as shown in the table on the right.

IF... LED

V1 = V2 Amber

V1 > V2 Red

V1 < V2 Green

11. EXAMPLE 4: Brightness control

You must have seen a system for controlling the brightness of the lighting in a room. You can

brighten or dim the lights and create different atmospheres in the room using the control. And that’s

exactly what you’re going to do in this exercise.

We use the analog voltage coming from one of the potentiometers and going to the A0 pin to

generate a PWM signal that regulates the voltage going to the white LED connected to pin 6.

Have a look at the extract from the main body of the program (Figure 13). It’s a pushover! The

analogRead(A0) function reads the analog value on the A0 pin.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

20

As you are already aware the result of the conversion may be anywhere between 0 and 1023.

Using the map() function you can round off that value to another equivalent between 0 and 255, which

is the parameter that the analogWrite() function needs to generate a PWM signal on output 6 (the white

LED).

Upload the program and amaze your family and friends. You can dim or brighten the light by

moving the potentiometer from left to right or vice versa.

12. EXAMPLE 5: Electric rudder

We’re going to use the same principles as in the previous exercise. Just suppose you’re out

sailing. By moving the potentiometer, you move the servomotor’s shaft which in turn moves the boat’s

rudder.

If you have a close look at the program you’ll see that map() function rounds off the result of the

conversion to a value between 0 and 180, the maximum number of degrees that the servomotor shaft

can turn.

13. EXAMPLE 6: Photometer

We’re going to work with the light sensor now and imitate a photometer or instrument for

measuring ambient light. Every time we press the pushbutton connected to pin 4, the voltage coming

from the light sensor connected to pin A2 is converted into its analog equivalent.

The program measures the analog value on the A2 input based on the light that strikes the

sensor and then calculates the voltage. The results are transmitted using serial communication.

You can regard this exercise as an experimental program. You can make a number of

measurements like the ones in the figure on the right. The first measurement you make is with the sensor

in the dark and the last one in maximum brightness.

You can also look for a relationship between these measurements and the ones provided by a

commercially manufactured instrument. Based on what you find out, you can create your own instrument

for measuring light in lux or in lumens.

Figure 13

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

21

14. EXAMPLE 7: Lighting control

This exercise doesn’t offer anything especially new but it does have practical applications: in

public lighting systems for instance. I’ve no doubt it’s used to light the streets of your town or city.

When it starts to get dark, the street lights go on. In this exercise, the light sensor connected to

the A2 analog input measures the ambient light. There’s sure to be a similar sensor in your street; you’ll

find it in some out of the way but secure location. The LED connected to pin 6 simulates the street light.

It’s interesting to note that once again a function has been created: Measure_light(). This new

function takes a series of ambient light samples at regular intervals and then calculates and returns the

average of them all.

This is used to “filter” the analog signal coming from the light sensor; this avoids very small

variations that make the street lights go on and off for no reason.

The main program calls our Measure_light() function and compares the average with the

minimum value established for turning on the white LED.

• And now it’s your turn

Have a think about this example: it’s night time and the street lights are on. What happens if

there’s a storm and a streak of lightning strikes the sensor? The street lights will probably go off as our

program will think that it’s day time. They’ll go on again later of course. This is a real example; things

like this happen. But should we find a way to avoid it? Find a solution that avoids this happening and

improve the program.

15. EXAMPLE 8: Measuring reflections

This exercise is very simple and doesn’t offer anything especially new. The idea is to measure

the reflected light detected by the infrared (IR) sensor connected to the A3 analog input. The result is

transmitted using serial communication.

• And now it’s your turn

When you record the program open up the serial port monitor as well so you can see the different

measurements. As the converter has a resolution of 10 bits, the values will be between 0 and 1023 (210).

Here are a few things you should check up on:

✓ If you don’t put anything in front of the sensor, you’ll notice that the reading is quite small. The

IR light that’s emitted disperses, doesn’t bounce back and the sensor therefore only detects a

small amount of reflected light.

✓ If you place something brightly coloured at some 10mm from the sensor, you’ll notice that the

reading increases considerably.

Bright colours are reflected better that IR light; they turn round and bounce back towards the sensor

more.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

22

✓ Try the same experiment but this time with a darker object. The reading on the sensor drops.

Darker colours absorb IR light more and the sensor receives a smaller quantity of reflected

light.

✓ You can also experiment with moving the object nearer to the sensor or further away. You’ll

notice that the reading changes when you move the object closer to the sensor or further

away. The closer the object is to the sensor, the greater the amount of reflected light the

sensor receives.

16. EXAMPLE 9: Detecting colours

This is a purely experimental exercise and there are ways of improving it. It’s all about detecting

the colour of an object. Use the values on the table in the previous exercise as a reference. We’re going

to try and distinguish between black and white in this exercise.

The program waits until you press the pushbutton connected to pin 12. Then the IR sensor

connected to the A3 analog input performs the measurement. If this is less than 300 it transmits the

message “BLACK”. If the value is equal to 300 or greater it transmits the message “WHITE”. These

messages are transmitted using serial communication.

As you can see from the above figure you can create a black and white object with a simple

piece of cardboard. You put it in front of the sensor at a distance of approximately 15 mm and you press

D12 to make the measurement. The object’s colour will appear on the serial port monitor.

17. EXAMPLE 10: Temperature sensors

This exercise is very similar to the previous ones. Here the idea is to measure and display the

room temperature detected by the sensor.

The measurement is performed by pressing the pushbutton connected to the D4 pin. The result

of the conversion (AN4), its equivalent in voltage (V = AN4 * 0.0048) and the room temperature in ºC (T

= AN4 * 500 / 1024) are transmitted using serial communication.

18. EXAMPLE 11: Air conditioners

Here’s another example with an obvious practical application. We’re going to simulate a simple

air-conditioning system. The figure below will give you a better idea.

When the temperature exceeds a value established in the “Max” variable the green LED light

on pin 9 goes on; this is to simulate that the cooling system has just gone on. If the room temperature

drops below a certain value established in the “Min” variable, the red LED light on pin 11 goes on; this

is simulate that the heating system has just gone on. If the sensor detects a temperature between the

“Max” and “Min” both the cooling and the heating systems go off. This is assumed to be the temperature

comfort zone.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

23

19. EXAMPLE 12: A PWM SIGNAL

This is a very simple exercise and a good opportunity to use the analogWrite() function. The

idea is to generate a PWM signal on pin 6 which is connected to the white LED on the development

board.

You have to state the percentage of the duty cycle or the required voltage in the “Power”

variable. The “Cycle” variable calculates the value of the equivalent duty cycle which is between 0 and

255.

The setup() function is empty but it’s compulsory to include it.

The main body of the program is in the loop() function. It generates a PWM signal with the duty

cycle you requested on pin 6 using analogWrite();.

Here’s an important detail: have a close look at the while(1); function. These loops continue

infinitely until the expression inside the parenthesis () becomes false. Something must change the tested

variable or the while loop will never exit. It forms an infinite loop. This means that the controller doesn’t

execute any other function.

But the PWM signal is still there on pin 6 all the same. Why? Because the controller’s internal

electronic circuits generate the PWM signals on pins 3, 5, 6, 9, 10 and 11. Once the analogWrite()

function starts generating them they continue indefinitely until you give an order to the contrary. We refer

to them as “Hardware” generated signals.

20. EXAMPLE 13: Optical effects

This example will clearly demonstrate the optical effect created with the brightness of a LED

light by a PWM signal with a duty cycle that gradually increases and decreases.

The first for() loop increases the duty cycle from 0 to 255 in steps of 5. The LED’s brightness

will increase from minimum to maximum.

The second for() loop decreases the duty cycle from 255 to 0 insteps of 5 too. The Led light’s

brightness will decrease from maximum to minimum.

21. EXAMPLE 14: Manual regulation

This is really an excellent practical exercise. You’re going to manually regulate the brightness

of the white LED connected to pin 6. You’re going to make the LED light brighter by increasing the PWM

signal duty cycle by multiples of five using pushbutton 4. You can fade it by using pushbutton 7 to reduce

the length of the duty cycle, once again by multiples of five.

Let me remind you that you can apply exactly the same regulation principles to an electric motor,

for instance; you’ll be able to control its turning speed using the same principle.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

24

22. EXAMPLE 15: Random lights

This exercise is a bit of a novelty item. Maybe it’ll help you to decorate your Christmas tree,

shop window, bedroom, garden or whatever you fancy. We’re going to generate four simultaneous PWM

signals on pins 6, 9, 10 and 11.

The random() function we studied in this unit will randomize the length of each PWM signal’s

duty cycle. This in turn randomizes the voltage received by the Led lights.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

25

REFERENCES

BOOKS

[1]. EXPLORING ARDUINO, Jeremy Blum, Ed.Willey

[2]. Practical ARDUINO, Jonathan Oxer & Hugh Blemings, Ed.Technology in action

[3]. Programing Arduino, Next Steps, Simon Monk

[4]. Sensores y actuadores, Aplicaciones con ARDUINO, Leonel G.Corona Ramirez, Griselda

S. Abarca Jiménez, Jesús Mares Carreño, Ed.Patria

[5]. ARDUINO: Curso práctico de formación, Oscar Torrente Artero, Ed.RC libros

[6]. 30 ARDUINO PROJECTS FOR THE EVIL GENIUS, Simon Monk, Ed. TAB

[7]. Beginning C for ARDUINO, Jack Purdum, Ph.D., Ed.Technology in action

[8]. ARDUINO programing notebook, Brian W.Evans

WEB SITES

[1]. https://www.arduino.cc/

[2]. https://www.prometec.net/

[3]. http://blog.bricogeek.com/

[4]. https://aprendiendoarduino.wordpress.com/

[5]. https://www.sparkfun.com

https://www.arduino.cc/
https://www.prometec.net/
http://blog.bricogeek.com/
https://aprendiendoarduino.wordpress.com/
https://www.sparkfun.com/

