

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

1

UNIT 4: DECSION MAKING AND CONTROL FUNCTIONS

AIMS

Study the functions that control the flow and execution of a program. They’re also called

“control functions” and they’re available in all programming languages; Arduino is no exception.

The examples you’ve done up until now were programs comprising a series of functions that

were executed sequentially from first to last. From now on the programs are going to have a

certain amount of “intelligence” and decision making ability; there’ll functions that are only

executed under certain circumstances.

THEORY SECTION

• COMPARISON OPERATORS

• BOOLEAN OPERATORS

• COMPOUND OPERATORS

• THE IF(…) FUNCTION

• THE IF(…) ELSE FUNCTION

• THE FOR(…) FUNCTION

• THE WHILE(…) FUNCTION

o OTHER FORMS OF WHILE

• THE SWITCH(…) / CASE FUNCTION

• OTHER CONTROL FUNCTIONS

o THE DO … WHILE(…) FUNCTION

o THE BREAK FUNCTION

o THE RETURN FUNCTION

o THE GOTO FUNCTION

 PRACTICE SECTION

• EXAMPLE 1: The Electric Bell V2

• EXAMPLE 2: The Fairy Lights V2

• EXAMPLE 3: The Traffic Signal V3

• EXAMPLE 4: The Electric Beacon

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

2

• EXAMPLE 5: The Traffic Signal V4

• EXAMPLE 6: Bursts

• EXAMPLE 7: the Electric Bell V3

• EXAMPLE 8: The Meter

• EXAMPLE 9: Time

PRACTICE MATERIALS

-Lap top or desk top computer

-Arduino IDE work environment; this should include the supplementary material already installed and

configured.

-Arduino UNO controller board

-A USB cable

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

3

TABLE OF CONTENTS

THEORY SECTION ... 4

1. COMPARISON OPERATORS.. 4

2. BOOLEAN OPERATORS .. 5

3. COMPOUND OPERATORS .. 6

4. IF(…) FUNCTION ... 6

5. IF(…) ELSE FUNCTION ... 8

6. FOR() FUNCTION: .. 9

7. WHILE() FUNCIÓN: ... 11

A. OTHER FORMS OF WHILE() ... 12

8. SWITCH() / CASE FUNCTION .. 13

9. OTHER CONTROL FUNCTIONS ... 14

A. DO…WHILE() FUNCTION .. 15

B. BREAK FUNCTION ... 15

C. RETURN FUNCTION ... 15

D. THE GOTO FUNCTION .. 15

PRACTICE SECTION ... 16

10. EXAMPLE 1: ILLUMINATING LEDS ... 16

11. EXAMPLE 2: MONITORING INPUTS ... ¡ERROR! MARCADOR NO DEFINIDO.

12. EXAMPLE 3: MONITORING THE INPUTS WITH PULL-UP RESISTORS ¡ERROR! MARCADOR NO DEFINIDO.

13. EXAMPLE 4: MONITORING INPUTS WITHOUT INTERRUPTS................................... ¡ERROR! MARCADOR NO DEFINIDO.

14. EXAMPLE 5: MONITORING USING INPUTS WITH INTERRUPTS. ¡ERROR! MARCADOR NO DEFINIDO.

15. EXAMPLE 6: CONTROLLING THE TWO INTERRUPTS ... ¡ERROR! MARCADOR NO DEFINIDO.

REFERENCES ... 22

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

4

THEORY SECTION

We human beings spend our days making decisions - some of us more than others, of course.

We’re able to analyse our surroundings and circumstances and make decisions based on our interests,

feelings, abilities, intuition, commitments etc. These decisions cause us to act in different ways

depending on what suits us.

The programs you’ve been working on until now have been very sequential ones. All the

instructions are executed one after the other from first to last without any other consideration.

Nevertheless, Arduino, just like any other controller, has the ability to make decisions and

execute programs or carry out tasks appropriate for each particular case. As I’m sure you’re aware,

Arduino hasn’t got any feelings or intuition; it’s not even intelligent. It’s a machine and all it knows how

to do is how to work with numbers. It makes decisions based on them: logical and arithmetic calculations,

comparisons, states of input signals, analogical values read off a sensor etc…

1. COMPARISON OPERATORS

As you know, Arduino can perform arithmetic operations like addition and subtraction. You also

know that the results can be expressed as constants or variables or a combination of both.

But Arduino also knows how to make comparisons between numbers or the results of certain

functions. Here are the various comparison operators as well as the signs that represent them:

OPERATOR SIGN OPERATOR SIGN

Equal to = = Different to !=

Less than < Greater than >

Less than or equal to < = Greater than or equal to >=

Whatever comparison it is, there are only two possible results: “true” or “false”. Have a close

look at the following examples:

Suppose that...

char Letter = ‘J’; int B = 12345;

byte A = 13; float PI = 3.1416

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

5

Then...

2. BOOLEAN OPERATORS

It’s even possible to relate some of preceding comparisons to each other. Arduino’s got three

logical, or “boolean”, operators for this purpose; they’re sure to remind you of some of the examples you

did in Unit 1. Here they are with their signs:

OPERATOR SIGN

NOT !

AND &&

OR ||

In the same way, there are also only two possible results when two or more expressions are

related using these logical operators: “true” o “false”. I suggest you use curly braces to group each

relation: it’ll make reading them easier and avoid errors. Have a look at the following examples:

(Letter == ‘X’) && (A > 10) //False

(A == 10+3) && (B >= 12345) && (Letter != ‘Q’) //True

(B > 12300) || (PI = 3.1412) //True

(A == B) || (A > 10 + 4) //False

!(A == B) //True

Letter == ‘J’ //True

Letter != ‘Q’ //True

18 < A //False

A == 8 + 5 //True

B >= A //True

PI * 2 > 8.16 //False

B – 1000 <= A * 12 //False

digitalRead(4)==1 //True if pin 4 is on level “1”

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

6

(digitalRead(4) ==1) && (digitalRead(8)==1) //True if pins, 4 and 8, are on level 1

3. COMPOUND OPERATORS

Lots of times you’ll be doing very simple operations with a variable and the result will end up in

the same variable. Remember that you can use the so-called “compound operators” to simplify these

expressions. Here’s a summary of them in the table below:

OPERATION OPERATOR EXAMPLE EQUAL TO

++ increases a unit X++ X= X + 1

- - decreases a number Y- - Y = Y - 1

+ = addition X+=Y X = X + Y

-= subtraction X-= 3 X = X - 3

*= multiplication X *= Y X = X * Y

/= division X /= 5 X = X / 5

4. IF(…) FUNCTION

This is the most basic and important control function. It makes it possible to evaluate

expressions and then make decisions. In computing, the sign in the figure on the left is used to represent

the taking of a decision in diagrams known as flow charts. The controller assesses an expression as

complicated as or more complicated than the ones you’ve already seen. If the result is “true” it executes

all the functions inside the curly braces “{…}”. If the result is “false” the controller doesn’t execute them

and the program keeps going.

Remember this: any expression can be formed by arithmetic operations between constants and/

or variables related to each other by comparison operators which can in turn be related using logical or

Boolean operators. Take your time to think about this and have another look at the previous examples.

This is important...there’s no rush!

YES

NO

Figure 1

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

7

Syntax:

if(expression)

{

 ….

….

}

expression: establishes the condition that the Arduino controller has to assess. It might be the

relationship between constants and/or variables. There might be one or more comparisons

related to each other by logical operators. The results of arithmetic operations or other

functions of Arduino language can also be compared.

curly braces: they might look like the two slices of bread in a sandwich – the curly brackets enclose the

functions the controller has to execute if the “true” condition is met. You don’t have to use

them if there’s only one function to execute.

Example:

 void loop()

{

if((A>B) || (C < 25)) //If the condition is true…

{

 digitalWrite(6,HIGH); //Switches on pin 6

C=25; //A value of 25 is stored in the C variable

}

.... //Continues the execution....

}

Tip: Because the use of the curly brace is so varied, it is good programming practice to type the
closing brace immediately after typing the opening brace when inserting a construct which requires
curly braces. Then insert some carriage returns between your braces and begin inserting statements.
In the example the braces that open and close the loop() function are easy to distinguish from the
braces that enclose the functions to be executed if the if() condition is true.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

8

5. IF(…) ELSE FUNCTION

This is another control function; it’s a derivative of the previous if(…) function. It tells you exactly

what to do if the (else) condition is false. Have a look at the Figure 2. The function assesses the

expression or condition. If it’s “true”, all the functions in the curly braces “{…}” are executed just the

same as with the if(…) function.

If the condition is “false” all the functions enclosed by the else {…} braces are executed. Once the

functions have been executed, whether or not the condition is true or false, the program keeps going.

Syntax:

if(expression)

{

 ….

 ….

}

else

{

….

….

}

expression: establishes the condition the Arduino controller has to assess. This could be a comparison

of constants and/or variables. There might be one or more comparisons related to each

other by logical operators. It can also compare the results of arithmetic operations or other

Arduino language functions.

curly braces: contain all the functions the controller has to execute if the (if) condition is true or false

(else). You don’t have to include them if there’s only one function to execute in either case.

YES NO

Figure 2

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

9

Example

if(digitalRead(4) == 1) //If pin 4 is on “1” …

 {

digitalWrite(6,HIGH); //Enables pin 6

tone(2,2000,400); //Generates a 2 KHz tone on pin 2

}

else //…and if not…

digitalWrite(6,LOW); //Disables output 6

…. //Continues executing the program

…

6. FOR() FUNCTION:

This function enables us to create controlled loops. A loop repeats a block of functions enclosed

in curly braces.

A picture’s worth a thousand words. Have a look at the flow chart on Figure 3. We declare an

initial value of 1, for example, for the “N” variable. The value is tested and if it’s less than 5 all the

functions enclosed in the curly braces are executed. The value of the “N” variable is changed

automatically. It’s raised by one unit in the example (N++). It’s tested again. If it's true, the statement

block and the increment are executed and then the condition is tested again.

When the condition becomes false, the loop ends. The functions enclosed in the curly brackets

in the example in the figure are executed four times: that’s how long “N” remains less than 5.

END

Figure 3

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

10

Syntax:

for(initialization,condition,increment)

{

….

….

}

initialization: this is an expression that makes it possible to establish the value of a variable. It only

happens once at the beginning of the loop.

condition: it’s the condition that’s tested. If it's “true”, the statement block and the increment is executed.

When the condition becomes “false”, the loop terminates and the program keeps going.

The condition is tested every time the loop is repeated.

increment: this expression makes it possible to change the value of the i variable. This expression is

executed each time the loop is repeated.

curly braces: they “sandwich” all the functions making up the loop. The functions are executed a

specified number of times.

Example:

for (int N = 1; N < 5; N=N+1) //Establishes the loop conditions

{

digitalWrite(6,HIGH); //Enables pin 6

delay (150); //Pauses the program for 0.15”

digitalWrite(6,LOW); //Disenables pin 6

delay (1000); //Pauses the program for 1”

}

…. //Continues executing the program

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

11

The sequence of “enable, pause, disenable, pause” on pin 6 is repeated four times.

You can use all the kinds of expressions we studied at the beginning of this unit to set the

initialization, the condition and the increment of any for() loop. They could be arithmetic, logic or Boolean

or comparisons between variables and/or constants. Just suppose the following:

int A = 5;

for(byte N=A+3; N <= A * 2 + 8; N = N + 3)

{

….

….

}

Now it’s your turn:

What’s the initial value? _________________________________

And the final one? ______________________________________

How much does it increase each time? ________________________

How many times is the loop repeated? __________

7. WHILE() FUNCIÓN:

while loops are a variation on for() functions so they’re also used for loops where a group of functions

are executed a certain number of times. Loops and more loops...

Syntax:

while(condition)

{

….

….

}

condition: this is the conditional expression. It will loop continuously, and infinitely, until the expression

inside the curly braces, {}, becomes false. When it does, the loop finishes and the program

keeps going.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

12

Example:

int N = 6 while (N > 0) //While N is greater than 0

…

{

digitalWrite(6,HIGH); //Enables pin 6

delay (150); //Pauses for 0.15”

digitalWrite(6,LOW); //Disenables pin 6

delay (1000); //Pauses for 1”

n--; //The next value for N (N = N – 1)

}

….

…. //Continues executing the program

A. OTHER FORMS OF WHILE()

It’s very common to use the while() function as a loop within itself. There are no curly braces and the

loop executes the function until the condition is false. Have a close look at the following examples and

note where the ‘;’ is positioned.

while(digitalRead(4)==1);

The while() function is executed constantly as long as pin 4 is on level “1”. To put it another way, the

example waits until pin 4 goes to level “0” to continue executing the program.

while(! digitaRead(4));

This is just the like the previous example but back to front. The while() function is executed constantly

as long as pin 4 ISN’T on level “1”, or other words, as long as it’s on level “0”. It therefore waits until pin

4 goes to level “1” to continue executing the program.

while(digitalRead(4)==0);

This is the same as the previous example: it waits until pin 4 goes to level “1” to continue with executing

the program.

while(1);

An infinite loop. The condition is always true (1), so the while() function is executed constantly and

indefinitely. It doesn’t execute any subsequent function.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

13

8. SWITCH() / CASE FUNCTION

This function will enable you to choose between several “ways” of executing various groups of

functions. A switch statement compares the value of a variable to the values specified in case

statements. When a case statement is found whose value matches that of the variable, the code in that

case statement is run.

The break keyword exits the switch() statement, and is typically used at the end of each case. It’s

something like this:

“If the value of the variable is X do these functions. If the value of the variable is Y do these other

ones. If it’s Z do these other ones etc…”

Syntax:

switch(variable)

{

case X:

….;

break;

case n:

….;

….;

break;

default:

….;

}

variable: this is the value of the variable that’s going to be compared with the ones in each “case”

mentioned.

case: this fixes all the values that are going to be compared to the contents of the variable. When the

contents of the variable coincide with one of the values all the functions between this case and

the break expression are executed.

default: this is optional. If none of the values coincides all the functions are executed.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

14

Example:

switch(A) //Variable to be compared

{

case 1: //If the value of A is 1...

digitalWrite(6,HIGH); //Enables pin 6

tone(2,200,200); //Tone on pin 2

break; //Exit

case 3: // If the value of A is 3…

B=digitalRead(7); //Reads pin 7

break; //Exit

case 124: //If the value of A is 124…

B=12*4; //The value of B is 48

digitalWrite(11,HIGH) //Enables pin 11

break; //Exit

default: //If nothing else matches…

 digitalWrite(6.LOW); //Disables pin 6

 digitalWrite(11,LOW); //Disables pin 11

}

9. OTHER CONTROL FUNCTIONS

The control functions I’ve introduced you to are the most important ones and the ones you’re going

to use. The Arduino programming language does however dispose of other ones. I don’t want you to

get snowed under though so I’ll leave it up to you: if you want to use tem you can. Maybe as you learn

more and improve your technique, you’ll see their usefulness.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

15

A. DO…WHILE() FUNCTION

 The do loop works in the same way as the while() loop, with the exception that the

condition is tested at the end of the loop, so the do loop will always run at least once.

Syntax:

do

{

….

} while(condition)

B. BREAK FUNCTION

break is used to exit from a for(),while() or do() loop, bypassing the normal loop condition. It is

also used to exit from a switch() / case statement.

Syntax:

 break;

C. RETURN FUNCTION

 This one terminates a function and returns a value from any function created by the user to the

calling function, if desired. You’ll learn how to create your own functions a little later on.

Syntax:

return;

return value;

value: this is the value the function returns when it goes back to the calling program. It’s optional and it

may be a constant or form part of a variable.

D. THE GOTO FUNCTION

Transfers program flow to a labelled point in the program.

Syntax:

 test:

….

goto test: //Automatically jumps to wherever the label indicated (“test”) is in the program.

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

16

PRACTICE SECTION

10. EXAMPLE 1: Electric bell V2

This is an improved version of the example we did in Unit 5 where we had to reboot the entire

system every time we wanted to ring the bell.

This improved version also provides us with a good opportunity to use the if() function. The program

checks to see if pin 4 is enabled;

When this happens two consecutive tones of 400 and 300 Hz are generated.

If pin 4 isn’t enabled the program doesn’t do anything.

Have a close look at the red arrows in the Figure 4. I’ve already suggested that it’s advisable to align

the curly braces so that the relationship between the two is quite clear: one of the braces opens and the

other closes.

11. EXAMPLE 2: The fairy lights V2

Here’s another old friend: the fairy lights. The movement is from right to left or vice versa depending

on whether pin 4 is on level “0” or level “1”. This is a very good opportunity to use the function if(..) else

function.

Figure 4

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

17

12. EXAMPLE 3: The traffic signal V3

Let’s keep improving on some of the examples from the last unit. Now it’s time for the traffic signal.

In this version the sequence begins when the pedestrian presses a pushbutton connected to pin 4. You

don’t have to press the RESET button to reboot the system like you did in the previous versions.

If nobody presses the button the traffic signal stays on red. This is another good example of how

to use the if(…) else function.

I suggest you compare this example to the previous versions. The differences are small but

significant; we’ll be improving our traffic signal bit by bit.

13. EXAMPLE 4: Electric beacon

This is a good, practical example which also serves an introduction to the for(…) function. It

attempts to simulate a beacon or electric lighthouse that gives out a certain number of flashes of light

during a given period of time.

The loop() function in the figure on the right contains the main program. for(…) fixes the initial value

of the variable (N=1) for the number of the times the loop has to be executed until N reaches the final

value (N< Flashes); it also fixes the increment of N each time the loop (N++) is executed.

If you have a close look at it you’ll see that the loop has to be repeated five times. Each time the

loop is repeated the white LED goes on for 0.15” and then goes off for another 0.15”. Once the loop is

finished there’s a pause of 1.5” and the process is repeated.

• Now it’s your turn

This program is very simple. Why don’t you try changing the number of flashes, the time the light

stays on and off and the time between one burst of flashes and the next. Experiment with different

durations.

Figure 5

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

18

14. EXAMPLE 5: The Traffic signal V4

Since you now know how the for...() function works, this is the ideal time to design the final version

(V4) of the traffic signal project. It doesn’t provide any functional improvements to the previous version,

but technically speaking it does provide the best solution of all. Have a look.

If you have a close look at the program you’ll realize why it’s the best solution. That’s right: the two

for() loops generate the sequence of tones emitted every time the green and amber lights go on. The

program therefore has fewer functions, uses less flash memory and is consequently more efficient.

15. EXAMPLE 6: BURSTS

for(…)loops can be nested. This means that we can place for(…) loops within other for(…) loops,

and other for() loops within those ones and so on and so forth.

This program is a simple example of two nested for(…) loops. They make two lights flash on and

off each time you press a pushbutton connected to pin 4.

The red LED flashes once for every five flashes of the white LED; the sequence terminates with

the sixth flash.

There are two for(…) loops inside the if(…) function. The loops are executed every time

someone presses the pushbutton connected to pin 4. The “B” variable controls the inner loop. The

variable goes from 1 to 5. It generates a burst of five flashes from the white LED.

The “A” variable goes from 1 to 6 and controls the outer for(…) loop. As it encloses the inner

loop it goes around six times. Each time it goes round the red LED flashes.

When two or more for(…) loops are nested, the inner loop is resolved first and then the next one

and so on until arriving at the outer ring.

Figure 6

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

19

16. EXAMPLE 7: Electric bell V3

Here’s version V3 of our old friend, the electric bell; it’s the final and definitive one. The important

thing about this example is the way we treat the input signal on pin 4. It’s no longer enough to press the

pushbutton and set a level “1”. No, we have to take our finger off it and set the rest level “0”.

This task is known as “pulse detection”. It’s used a lot in control systems where the input signal

isn’t made up of a static logic level like “1” o el “0”. There are lots of input peripherals that give off pulses.

A pulse is a complete transition from level “0” to level “1” and back again to “0” (0-1-0) or the other way

round (1-0-1).

The while() function is ideal for detecting these situations and lots of others. Have a look at the

program in the figure on the right.

The first while() function waits as long as the number 4 digital input is on level “0”. The second

while() function waits as long as the number 4 digital input is on level “1”. Conclusion: until you press

the pushbutton (level “1”) and then take your finger off it (level “0”), it doesn’t make a sound. Try it and

pay attention to this detail; this is what makes it different to the electric bell in the V2 version.

17. EXAMPLE 8: METER

This is a practical application. Imagine an access control system for an auditorium with a capacity

of ten people. A sensor connected to pin 4 detects when a person goes by and generates a “pulse” for

each person that enters. When the auditorium is full, the device gives a beep to tell the audience that

the performance is about to begin. Have a look at the loop() function in the figure on the left.

The functions contained in the while() function are executed as long as the “counter” variable is

less than or equivalent to 10. This variable increases each time a 0-1-0 pulse is detected on pin 4. Two

separate while() functions are also used for detection.

When the sensor has generated ten pulses, which means there are ten people in the auditorium, it

gives a beep.

Figure 7

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

20

• Now it’s your turn

Once you’ve recorded the program make sure it works properly. All you have to do is press the

pushbutton on pin 4. This simulates the people counter sensor. Is it working properly? Is it? No, I don’t

think so...

If you have a good look you’ll notice that it seems to count fewer people than there really are. Or in

other words, when five or six people have gone past the beeper goes off. This defect is due to a problem

known as the “rebound effect” and it occurs a lot with pushbuttons and switches.

Even though you only press the button once, the input pin on the controller doesn’t just receive a

single 0-1-0 impulse, it receives several. This is due to the fact that the metal contacts on the pushbutton

take a while to re-establish themselves each time you push the button. Have a look at the figure on the

left.

Even though this time is just a few milliseconds, our Arduino is a great deal faster and detects all

those pulses. What this means is that although you only press the pushbutton once, Arduino may detect

this as one, two or more pulses.

One way of avoiding this is by inserting a short pause. When a change of state in the pushbutton

is detected we insert a 20 mS pause before waiting for the next change. This way we avoid any rebounds

during that lapse of time. Make the following changes in the EXAMPLE 8 program, record it and then

check to see if it counts properly.

while(! digitalRead(4)); //Waits as long as pin 4 is on “0”

delay(20); //Anti-rebound pause

while(digitalRead(4)); //Waits as long as pin 4 is on "1"

delay(20); //Anti-rebound pause

Counter ++; //Pulse received, counter + 1

Figure 8

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

21

18. EXAMPLE 9: TIME

Do you remember the millis() function? That was the one that enabled you to know how much time

goes by between the moment you connect Arduino and/or the moment you reboot it. Okay then, we’re

going to use it in conjunction with the switch(…) / case function to measure different time lapses.

That’s right: after the Arduino reboot sequence we’re going to measure how much time elapses.

After one second the white LED goes on. After two, the green LED goes on, after three, the amber LED

and after four, the red LED. Last of all, when 8 seconds have elapsed since the system was rebooted,

all the LEDs go out and a tone sounds. Have a close look at the loop() function in the program in the

figure.

The A=milis() function stores the milliseconds that have elapsed since the system reboot in the “A”

variable. The switch(A) function analyses its contents. If the value of the contents is 1000 (case 1000:),

the white LED goes on. A second has elapsed (1000 mS). If the value of the contents is 2000 (case

2000:), the green LED goes on; if the value is 3000, the amber light goes on and if the value is 4000,

the red LED goes on. Finally, if the value of the contents is 8000 (case 8000:), 8 seconds will have

elapsed. All the LEDs go off and a 1 KHz tone is emitted.

The program keeps running but the time elapsed now exceeds 8000 ms (8 seconds) so the “A”

variable no longer meets any of the five conditions.

Do you know how long you’d have to wait for the variable to meet the five conditions again?

Let’s work it out. The millis() function returns an unsigned long integer of 32 bits. In other words, it

returns a value of between 0 and 4,294,967,295 thousandths of a second which equals 4,294,967

seconds. Bearing in mind that a day has 86,400 seconds (24 * 60 * 60), it’d take 50 days for the millis()

function to overflow and go back to 0.

If you want to go back and see the LED light-up sequence, you can wait all that time or just reboot

the system. Whatever you reckon…

Figure 9

"The European Commission support for the production of this publication does not constitute an endorsement of the contents which reflects the views only of the authors,

and the Commission cannot be held responsible for any use which may be made of the information contained therein."

22

REFERENCES

BOOKS

[1]. EXPLORING ARDUINO, Jeremy Blum, Ed.Willey

[2]. Practical ARDUINO, Jonathan Oxer & Hugh Blemings, Ed.Technology in action

[3]. Programing Arduino, Next Steps, Simon Monk

[4]. Sensores y actuadores, Aplicaciones con ARDUINO, Leonel G.Corona Ramirez, Griselda

S. Abarca Jiménez, Jesús Mares Carreño, Ed.Patria

[5]. ARDUINO: Curso práctico de formación, Oscar Torrente Artero, Ed.RC libros

[6]. 30 ARDUINO PROJECTS FOR THE EVIL GENIUS, Simon Monk, Ed. TAB

[7]. Beginning C for ARDUINO, Jack Purdum, Ph.D., Ed.Technology in action

[8]. ARDUINO programing notebook, Brian W.Evans

WEB SITES

[1]. https://www.arduino.cc/

[2]. https://www.prometec.net/

[3]. http://blog.bricogeek.com/

[4]. https://aprendiendoarduino.wordpress.com/

[5]. https://www.sparkfun.com

https://www.arduino.cc/
https://www.prometec.net/
http://blog.bricogeek.com/
https://aprendiendoarduino.wordpress.com/
https://www.sparkfun.com/

